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advance praise for 
the quantum universe

“A scientifi c match made in heaven.. . as breezily a written accessible 

account of the theory of quantum mechanics as you could wish for.”

—observer 

“Breaks the rules of popular science writing...[and] admirably shies away 

from dumbing down... . The authors’ love for their subject-matter shines 

through the book.”

—the economist

“This offering from Brian Cox and Jeff Forshaw is a solid introduction to the 

‘inescapable strangeness’ of the subatomic world.”

—nature

praise for why does e=mc2?

“[Cox and Forshaw] have blazed a clear trail into forbidding territory, from 

the mathematical structure of space-time all the way to atom bombs, 

astrophysics, and the origin of mass.”

—new scientist

“I can think of no one, Stephen Hawking included, who more perfectly 

combines authority, knowledge, passion, clarity, and powers of elucidation 

than Brian Cox. If you really want to know how Big Science works and why 

it matters to each of us in the smallest way then be entertained by this 

dazzlingly enthusiastic man.”

—stephen fry
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1.  Something Strange Is Afoot

Quantum. The word is at once evocative, bewildering and fascinat-
ing. Depending on your point of  view, it is either a testament to the 
profound success of  science or a symbol of  the limited scope of  
human intuition as we struggle with the inescapable strangeness 
of the subatomic domain. To a physicist, quantum mechanics is one 
of the three great pillars supporting our understanding of  the nat-
ural world, the others being Einstein’s theories of  Special and General 
Relativity. Einstein’s theories deal with the nature of  space and time 
and the force of  gravity. Quantum mechanics deals with everything 
else, and one can argue that it doesn’t matter a jot whether it is 
evocative, bewildering or fascinating; it’s simply a physical theory 
that describes the way things behave. Measured by this pragmatic 
yardstick, it is quite dazzling in its precision and explanatory power. 
There is a test of  quantum electrodynamics, the oldest and most 
well understood of  the modern quantum theories, which involves 
measuring the way an electron behaves in the vicinity of  a magnet. 
Theoretical physicists worked hard for years using pens, paper and 
computers to predict what the experiments should find. Experi-
menters built and operated delicate experiments to tease out the 
finer details of  Nature. Both camps independently returned preci-
sion results, comparable in their accuracy to measuring the distance 
between Manchester and New York to within a few centimetres. 
Remarkably, the number returned by the experimenters agreed 
exquisitely with that computed by the theorists; measurement and 
calculation were in perfect agreement.

This is impressive, but it is also esoteric, and if  mapping the 
 miniature were the only concern of  quantum theory, you might 
be  forgiven for wondering what all the fuss is about. Science, of  
course, has no brief  to be useful, but many of  the technological and 
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social changes that have revolutionized our lives have arisen out of  
 fundamental research carried out by modern-day explorers whose 
only motivation is to better understand the world around them. 
These curiosity-led voyages of  discovery across all scientific disci-
plines have delivered increased life expectancy, intercontinental air 
travel, modern telecommunications, freedom from the drudgery 
of  subsistence farming and a sweeping, inspiring and humbling 
vision of  our place within an infinite sea of  stars. But these are all in 
a sense spin-offs. We explore because we are curious, not because 
we wish to develop grand views of  reality or better widgets.

Quantum theory is perhaps the prime example of  the infin-
itely esoteric becoming the profoundly useful. Esoteric, because it 
describes a world in which a particle really can be in several places 
at once and moves from one place to another by exploring the entire 
Universe simultaneously. Useful, because understanding the behav-
iour of  the smallest building blocks of  the Universe underpins 
our  understanding of  everything else. This claim borders on the 
hubristic, because the world is filled with diverse and complex phe-
nomena. Notwithstanding this complexity, we have discovered that 
everything is constructed out of  a handful of  tiny particles that 
move around according to the rules of  quantum theory. The rules 
are so simple that they can be summarized on the back of  an enve-
lope. And the fact that we do not need a whole library of  books to 
explain the essential nature of  things is one of  the greatest mysteries 
of  all.

It appears that the more we understand about the elemental 
nature of  the world, the simpler it looks. We will, in due course, 
explain what these basic rules are and how the tiny building blocks 
conspire to form the world. But, lest we get too dazzled by the 
underlying simplicity of  the Universe, a word of  caution is in order: 
although the basic rules of  the game are simple, their consequences 
are not necessarily easy to calculate. Our everyday experience of  the 
world is dominated by the relationships between vast collections of  
many trillions of  atoms, and to try to derive the behaviour of  plants 
and people from first principles would be folly. Admitting this does 
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not diminish the point – all phenomena really are underpinned by 
the quantum physics of  tiny particles.

Consider the world around you. You are holding a book made of  
paper, the crushed pulp of  a tree.1 Trees are machines able to take a 
supply of  atoms and molecules, break them down and rearrange 
them into cooperating colonies composed of  many trillions of  indi-
vidual parts. They do this using a molecule known as chlorophyll, 
composed of  over a hundred carbon, hydrogen and oxygen atoms 
twisted into an intricate shape with a few magnesium and nitrogen 
atoms bolted on. This assembly of  particles is able to capture the 
light that has travelled the 93 million miles from our star, a nuclear 
furnace the volume of  a million earths, and transfer that energy 
into the heart of  cells, where it is used to build molecules from car-
bon dioxide and water, giving out life-enriching oxygen as it does so. 
It’s these molecular chains that form the superstructure of  trees and 
all living things, and the paper in your book. You can read the book 
and understand the words because you have eyes that can convert 
the scattered light from the pages into electrical impulses that are 
interpreted by your brain, the most complex structure we know of  
in the Universe. We have discovered that all these things are nothing 
more than assemblies of  atoms, and that the wide variety of  atoms 
are constructed using only three particles: electrons, protons and 
neutrons. We have also discovered that the protons and neutrons 
are themselves made up of  smaller entities called quarks, and that is 
where things stop, as far as we can tell today. Underpinning all of  
this is quantum theory.

The picture of  the Universe we inhabit, as revealed by modern 
physics, is therefore one of  underlying simplicity; elegant phenom-
ena dance away out of  sight and the diversity of  the macroscopic 
world emerges. This is perhaps the crowning achievement of  modern 
science; the reduction of  the tremendous complexity in the world, 
human beings included, to a description of  the behaviour of  just 

1. Unless of  course you are reading an electronic version of  the book, in which 
case you will need to exercise your imagination.
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a handful of  tiny subatomic particles and the four forces that act 
between them. The best descriptions we have of  three of  the forces, 
the strong and weak nuclear forces that operate deep within the 
atomic nucleus and the electromagnetic force that glues atoms and 
molecules together, are provided by quantum theory. Only gravity, 
the weakest but perhaps most familiar of  the four, does not at pres-
ent have a satisfactory quantum description.

Quantum theory does, admittedly, have something of  a reputa-
tion for weirdness, and there have been reams of  drivel penned in its 
name. Cats can be both alive and dead; particles can be in two places 
at once; Heisenberg says everything is uncertain. These things are 
all true, but the conclusion so often drawn – that since something 
strange is afoot in the microworld, we are steeped in mystery – is 
most definitely not. Extrasensory perception, mystical healing, 
vibrating bracelets to protect us from radiation and who-knows-
what-else are regularly smuggled into the pantheon of  the possible 
under the cover of  the word ‘quantum’. This is nonsense born from 
a lack of  clarity of  thought, wishful thinking, genuine or mischiev-
ous misunderstanding, or some unfortunate combination of  all of  
the above. Quantum theory describes the world with precision, 
using mathematical laws as concrete as anything proposed by New-
ton or Galileo. That’s why we can compute the magnetic response 
of  an electron with such exquisite accuracy. Quantum theory pro-
vides a description of  Nature that, as we shall discover, has immense 
predictive and explanatory power, spanning a vast range of  phe-
nomena from silicon chips to stars.

Our goal in writing this book is to demystify quantum theory; a 
theoretical framework that has proved famously confusing, even to 
its early practitioners. Our approach will be to adopt a modern per-
spective, with the benefit of  a century of  hindsight and theoretical 
developments. To set the scene, however, we would like to begin 
our journey at the turn of  the twentieth century, and survey some 
of  the problems that led physicists to take such a radical departure 
from what had gone before.

Quantum theory was precipitated, as is often the case in science, by 
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the discovery of  natural phenomena that could not be explained 
by the scientific paradigms of  the time. For quantum theory these 
were many and varied. A cascade of  inexplicable results caused 
excitement and confusion, and catalysed a period of  experimental 
and theoretical innovation that truly deserves to be accorded that 
most clichéd label: a golden age. The names of  the protagonists are 
etched into the consciousness of  every student of  physics and dom-
inate undergraduate lecture courses even today: Rutherford, Bohr, 
Planck, Einstein, Pauli, Heisenberg, Schrödinger, Dirac. There will 
probably never again be a time in history where so many names 
become associated with scientific greatness in the pursuit of  a single 
goal; a new theory of  the atoms and forces that make up the phys-
ical world. In 1924, looking back on the early decades of  quantum 
theory, Ernest Rutherford, the New-Zealand-born physicist who 
discovered the atomic nucleus in Manchester, wrote: ‘The year 
1896 . . . marked the beginning of  what has been aptly termed the 
heroic age of  Physical Science. Never before in the history of  phys-
ics has there been witnessed such a period of  intense activity when 
discoveries of  fundamental importance have followed one another 
with such bewildering rapidity.’

But before we travel to nineteenth-century Paris and the birth 
of quantum theory, what of  the word ‘quantum’ itself ? The term 
entered physics in 1900, through the work of  Max Planck. Planck 
was concerned with finding a theoretical description of  the radi-
ation emitted by hot objects – the so-called ‘black body radiation’ –  
apparently because he was commissioned to do so by an electric 
lighting company: the doors to the Universe have occasionally been 
opened by the prosaic. We will discuss Planck’s great insight in 
more detail later in the book but, for the purposes of  this brief  
introduction, suffice to say he found that he could only explain the 
properties of  black body radiation if  he assumed that light is emit-
ted in little packets of  energy, which he called ‘quanta’. The word 
itself  means ‘packets’ or ‘discrete’. Initially, he thought that this was 
purely a mathematical trick, but subsequent work in 1905 by Albert 
Einstein on a phenomenon called the photoelectric effect gave 
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further support to the quantum hypothesis. These results were sug-
gestive, because little packets of  energy might be taken to be syn - 
onymous with particles.

The idea that light consists of  a stream of  little bullets had a 
long and illustrious history dating back to the birth of  modern phys-
ics and Isaac Newton. But Scottish physicist James Clerk Maxwell 
appeared to have comprehensively banished any lingering doubts in 
1864 in a series of  papers that Albert Einstein later described as ‘the 
most profound and the most fruitful that physics has experienced 
since the time of  Newton’. Maxwell showed that light is an electro-
magnetic wave, surging through space, so the idea of  light as a wave 
had an immaculate and, it seemed, unimpeachable pedigree. Yet, in 
a series of  experiments from 1923 to 1925 conducted at Washington 
University in Saint Louis, Arthur Compton and his co-workers suc-
ceeded in bouncing the quanta of  light off  electrons. Both behaved 
rather like billiard balls, providing clear evidence that Planck’s 
 theoretical conjecture had a firm grounding in the real world. In 
1926, the light quanta were christened ‘photons’. The evidence was 
incontrovertible  – light behaves both as a wave and as a particle. 
That signalled the end for classical physics, and the end of  the begin-
ning for quantum theory.



2.  Being in Two Places at Once

Ernest Rutherford cited 1896 as the beginning of  the quantum revo-
lution because this was the year Henri Becquerel, working in his 
laboratory in Paris, discovered radioactivity. Becquerel was attempt-
ing to use uranium compounds to generate X-rays, discovered just 
a few months previously by Wilhelm Röntgen in Würzburg. Instead, 
he found that uranium compounds emit ‘les rayons uraniques’, 
which were able to darken photographic plates even when they 
were wrapped in thick paper that no light could penetrate. The 
importance of  Becquerel’s rays was recognized in a review article 
by the great scientist Henri Poincaré as early as 1897, in which he 
wrote presciently of  the discovery ‘one can think today that it will 
open for us an access to a new world which no one suspected’. The 
puzzling thing about radioactive decay, which proved to be a hint of  
things to come, was that nothing seemed to trigger the emission of  
the rays; they just popped out of  substances spontaneously and 
unpredictably.

In 1900, Rutherford noted the problem: ‘all atoms formed at the 
same time should last for a definite interval. This, however, is con-
trary to the observed law of  transformation, in which the atoms 
have a life embracing all values from zero to infinity.’ This random-
ness in the behaviour of  the microworld came as a shock because, 
until this point, science was resolutely deterministic. If, at some 
instant in time, you knew everything it is possible to know about 
something, then it was believed you could predict with absolute cer-
tainty what would happen to it in the future. The breakdown of  this 
kind of  predictability is a key feature of  quantum theory: it deals 
with probabilities rather than certainties, not because we lack abso-
lute knowledge, but because some aspects of  Nature are, at their very 
heart, governed by the laws of  chance. And so we now understand 
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that it is simply impossible to predict when a particular atom will 
decay. Radioactive decay was science’s first encounter with Nature’s 
dice, and it confused many physicists for a long time.

Clearly, there was something interesting going on inside atoms, 
although their internal structure was entirely unknown. The key 
discovery was made by Rutherford in 1911, using a radioactive source 
to bombard a very thin sheet of  gold with a type of  radiation known 
as alpha particles (we now know them to be the nuclei of  helium 
atoms). Rutherford, with his co-workers Hans Geiger and Ernest 
Marsden, discovered to their immense surprise that around 1 in 
8,0.00000000000000175 meters alpha particles did not fly through the gold as expected, but 
bounced straight back. Rutherford later described the moment in 
characteristically colourful language: ‘It was quite the most incred-
ible event that has ever happened to me in my life. It was almost 
as incredible as if  you fired a 15-inch shell at a piece of  tissue paper 
and it came back and hit you.’ By all accounts, Rutherford was 
an engaging and no-nonsense individual: he once described a self-
important official as being ‘like a Euclidean point: he has position 
without magnitude’.

Rutherford calculated that his experimental results could be 
explained only if  the atom consists of  a very small nucleus at the 
centre with electrons orbiting around it. At the time, he probably had 
in mind a situation similar to the planets orbiting around the Sun. The 
nucleus contains almost all the mass of  the atom, which is why it is 
capable of  stopping his ‘15-inch shell’ alpha particles and bouncing 
them back. Hydrogen, the simplest element, has a nucleus consisting 
of  a single proton with a radius of  around 1.75 × 10−15 m. If  you are 
unfamiliar with this notation, this means 0.00000000000000175 meters metres, 
or in words, just under two thousand million millionths of  a metre. 
As far as we can tell today, the single electron is like Rutherford’s 
self-important official, point-like, and it orbits around the hydrogen 
nucleus at a radius around 10.00000000000000175 meters,0.00000000000000175 meters times larger than the nuclear diam-
eter. The nucleus has a positive electric charge and the electron has 
a negative electric charge, which means there is an attractive force 
between them analogous to the force of  gravity that holds the Earth 
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in orbit around the Sun. This in turn means that atoms are largely 
empty space. If  you imagine a nucleus scaled up to the size of  a ten-
nis ball, then the tiny electron would be smaller than a mote of  dust 
orbiting at a distance of  a kilometre. These figures are quite surpris-
ing because solid matter certainly does not feel very empty.

Rutherford’s nuclear atom raised a host of  problems for the phys-
icists of  the day. It was well known, for instance, that the electron 
should lose energy as it moves in orbit around the atomic nucleus, 
because all electrically charged things radiate energy away if  they 
move in curved paths. This is the idea behind the operation of  the 
radio transmitter, inside which electrons are made to jiggle and, as 
a result, electromagnetic radio waves issue forth. Heinrich Hertz 
invented the radio transmitter in 1887, and by the time Rutherford 
discovered the atomic nucleus there was a commercial radio station 
sending messages across the Atlantic from Ireland to Canada. So 
there was clearly nothing wrong with the theory of  orbiting charges 
and the emission of  radio waves, and that meant confusion for those 
trying to explain how electrons can stay in orbit around nuclei.

A similarly inexplicable phenomenon was the mystery of  the 
light emitted by atoms when they are heated. As far back as 1853, the 
Swedish scientist Anders Jonas Ångstrom discharged a spark through 
a tube of  hydrogen gas and analysed the emitted light. One might 
assume that a glowing gas would produce all the colours of  the 
rainbow; after all, what is the Sun but a glowing ball of  gas? Instead, 
Ångstrom observed that hydrogen emits light of  three very distinct 
colours: red, blue-green and violet, like a rainbow with three pure, 
narrow arcs. It was soon discovered that each of  the chemical ele-
ments behaves in this way, emitting a unique barcode of  colours. By 
the time Rutherford’s nuclear atom came along, a scientist named 
Heinrich Gustav Johannes Kayser had compiled a six-volume, 5,000- 
page reference work entitled Handbuch der Spectroscopie, document-
ing all the shining coloured lines from the known elements. The 
question, of  course, was why? Not only ‘why, Professor Kayser?’ 
(he must have been great fun at dinner parties), but also ‘why the 
profusion of  coloured lines?’ For over sixty years the science of  
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spectroscopy, as it was known, had been simultaneously an observa-
tional triumph and a theoretical wasteland.

In March 1912, fascinated by the problem of  atomic structure, 
Danish physicist Niels Bohr travelled to Manchester to meet with 
Rutherford. He later remarked that trying to decode the inner 
workings of  the atom from the spectroscopic data had been akin to 
deriving the foundations of  biology from the coloured wing of  a 
butterfly. Rutherford’s solar system atom provided the clue Bohr 
needed, and by 1913 he had published the first quantum theory of  
atomic structure. The theory certainly had its problems, but it did 
contain several key insights that triggered the development of  mod-
ern quantum theory. Bohr concluded that electrons can only take 
up certain orbits around the nucleus with the lowest-energy orbit 
lying closest in. He also said that electrons are able to jump between 

Figure 2.1: Bohr’s model of  an atom, illustrating the emission of  a photon (wavy 
line) as an electron drops down from one orbit to another (indicated by the 
arrow).

3

2

1
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these orbits. They jump out to a higher orbit when they receive 
energy (from a spark in a tube for example) and, in time, they will 
fall back down, emitting light in the process. The colour of  the light 
is determined directly by the energy difference between the two 
orbits. Figure 2.1 illustrates the basic idea; the arrow represents an 
electron as it jumps from the third energy level down to the second 
energy level, emitting light (represented by the wavy line) as it does 
so. In Bohr’s model, the electron is only allowed to orbit the proton 
in one of  these special, ‘quantized’, orbits; spiralling inwards is 
simply forbidden. In this way Bohr’s model allowed him to compute 
the wavelengths (i.e. colours) of  light observed by Ångstrom – they 
were to be attributed to an electron hopping from the fifth orbit 
down to the second orbit (the violet light), from the fourth orbit down 
to the second (the blue-green light) or from the third orbit down to 
the second (the red light). Bohr’s model also correctly predicted that 
there should be light emitted as a result of  electrons hopping down 
to the first orbit. This light is in the ultra-violet part of  the spec-
trum, which is not visible to the human eye, and so it was not seen 
by Ångstrom. It had, however, been spotted in 1906 by  Harvard 
physicist Theodore Lyman, and Bohr’s model described Lyman’s 
data beautifully.

Although Bohr did not manage to extend his model beyond 
hydrogen, the ideas he introduced could be applied to other atoms. 
In particular, if  one supposes that the atoms of  each element have 
a unique set of  orbits then they will only ever emit light of  certain 
colours. The colours emitted by an atom therefore act like a finger-
print, and astronomers were certainly not slow to exploit the 
uniqueness of  the spectral lines emitted by atoms as a way to deter-
mine the chemical composition of  the stars.

Bohr’s model was a good start, but it was clearly unsatisfactory: 
just why were electrons forbidden from spiralling inwards when it 
was known that they should lose energy by emitting electromag-
netic waves – an idea so firmly rooted in reality with the advent of  
radio? And why are the electron orbits quantized in the first place? 
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And what about the heavier elements beyond hydrogen: how was 
one to go about understanding their structure?

Half-baked though Bohr’s theory may have been, it was a crucial 
step, and an example of  how scientists often make progress. There 
is no point at all in getting completely stuck in the face of  perplex-
ing and often quite baffling evidence. In such cases, scientists often 
make an ansatz, an educated guess if  you like, and then proceed to 
compute the consequences of  the guess. If  the guess works, in the 
sense that the subsequent theory agrees with experiment, then you 
can go back with some confidence to try to understand your initial 
guess in more detail. Bohr’s ansatz remained successful but unex-
plained for thirteen years.

We will revisit the history of  these early quantum ideas as the 
book unfolds, but for now we leave a mass of  strange results and 
half-answered questions, because this is what the early founders of  
quantum theory were faced with. In summary, following Planck, 
Einstein introduced the idea that light is made up of  particles, but 
Maxwell had shown that light also behaves like waves. Rutherford 
and Bohr led the way in understanding the structure of  atoms, but 
the way that electrons behave inside atoms was not in accord with 
any known theory. And the diverse phenomena collectively known 
as radioactivity, in which atoms spontaneously split apart for no dis-
cernible reason, remained a mystery, not least because it introduced 
a disturbingly random element into physics. There was no doubt 
about it: something strange was afoot in the subatomic world.

The first step towards a consistent, unified answer is widely cred-
ited to the German physicist Werner Heisenberg, and what he did 
represented nothing less than a completely new approach to the 
theory of  matter and forces. In July of  1925, Heisenberg published a 
paper throwing out the old hotchpotch of  ideas and half-theories, 
including Bohr’s model of  the atom, and ushered in an entirely new 
approach to physics. He began: ‘In this paper it will be attempted to 
secure the foundations for a quantum theoretical mechanics which 
is exclusively based on relations between quantities which in prin-
ciple are observable.’ This is an important step, because Heisenberg 
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is saying that the underlying mathematics of  quantum theory need 
not correspond to anything with which we are familiar. The job of  
quantum theory should be to predict directly observable things, 
such as the colour of  the light emitted from hydrogen atoms. It 
should not be expected to provide some kind of  satisfying mental 
picture for the internal workings of  the atom, because this is not 
necessary and it may not even be possible. In one fell swoop, Heisen-
berg removed the conceit that the workings of  Nature should 
necessarily accord with common sense. This is not to say that a the-
ory of  the subatomic world shouldn’t be expected to accord with 
our everyday experience when it comes to describing the motion of  
large objects, like tennis balls and aircraft. But we should be pre-
pared to abandon the prejudice that small things behave like smaller 
versions of  big things, if  this is what our experimental observations 
dictate.

There is no doubt that quantum theory is tricky, and absolutely 
no doubt that Heisenberg’s approach is extremely tricky indeed. 
Nobel Laureate Steven Weinberg, one of  the greatest living physi-
cists, wrote of  Heisenberg’s 1925 paper:

If  the reader is mystified at what Heisenberg was doing, he or she is 
not alone. I have tried several times to read the paper that Heisenberg 
wrote on returning from Heligoland, and, although I think I under-
stand quantum mechanics, I have never understood Heisenberg’s 
motivations for the mathematical steps in his paper. Theoretical 
physicists in their most successful work tend to play one of  two roles: 
they are either sages or magicians  . . . It is usually not difficult to 
understand the papers of  sage-physicists, but the papers of  magician-
physicists are often incomprehensible. In that sense, Heisenberg’s 
1925 paper was pure magic.

Heisenberg’s philosophy, though, is not pure magic. It is simple 
and it lies at the heart of  our approach in this book: the job of  a 
 theory of  Nature is to make predictions for quantities that can be 
compared to experimental results. We are not mandated to produce 
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a theory that bears any relation to the way we perceive the world at 
large. Fortunately, although we are adopting Heisenberg’s philoso-
phy, we shall be following Richard Feynman’s more transparent 
approach to the quantum world.

We’ve used the word ‘theory’ liberally in the last few pages and, 
before we continue to build quantum theory, it will be useful to take 
a look at a simpler theory in more detail. A good scientific theory 
specifies a set of  rules that determine what can and cannot happen 
to some portion of  the world. They must allow predictions to be 
made that can be tested by observation. If  the predictions are shown 
to be false, the theory is wrong and must be replaced. If  the predic-
tions are in accord with observation, the theory survives. No theory 
is ‘true’ in the sense that it must always be possible to falsify it. As 
the biologist Thomas Huxley wrote: ‘Science is organized common 
sense where many a beautiful theory was killed by an ugly fact.’ 
Any theory that is not amenable to falsification is not a scientific 
theory – indeed one might go as far as to say that it has no reliable 
information content at all. The reliance on falsification is why scien-
tific theories are different from matters of  opinion. This scientific 
meaning of  the word ‘theory’, by the way, is different from its ordin-
ary usage, where it often suggests a degree of  speculation. Scientific 
theories may be speculative if  they have not yet been confronted 
with the evidence, but an established theory is something that is 
supported by a large body of  evidence. Scientists strive to develop 
theories that encompass as wide a range of  phenomena as possible, 
and physicists in particular tend to get very excited about the pros-
pect of  describing everything that can happen in the material world 
in terms of  a small number of  rules.

One example of  a good theory that has a wide range of  applica-
bility is Isaac Newton’s theory of  gravity, published on 5 July 1687 in 
his Philosophiæ Naturalis Principia Mathematica. It was the first mod-
ern scientific theory, and although it has subsequently been shown 
to be inaccurate in some circumstances, it was so good that it is still 
used today. Einstein developed a more precise theory of  gravity, 
General Relativity, in 1915.
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Newton’s description of  gravity can be captured in a single math-
ematical equation:

F = G
m1m2

r2

This may look simple or complicated, depending on your math-
ematical background. We do occasionally make use of  mathematics 
as this book unfolds. For those readers who find the maths difficult, 
our advice is to skip over the equations without worrying too much. 
We will always try to emphasize the key ideas in a way that does not 
rely on the maths. The maths is included mainly because it allows 
us  to really explain why things are the way they are. Without it, 
we should have to resort to the physicist-guru mentality whereby we 
pluck profundities out of  thin air, and neither author would be 
comfortable with guru status.

Now let us return to Newton’s equation. Imagine there is an 
apple hanging precariously from a branch. The consideration of  the 
force of  gravity triggered by a particularly ripe apple bouncing off 
his head one summer’s afternoon was, according to folklore, New-
ton’s route to his theory. Newton said that the apple is subject to the 
force of  gravity, which pulls it towards the ground, and that force 
is represented in the equation by the symbol F . So, first of  all, the 
equation allows you to calculate the force on the apple if  you know 
what the symbols on the right-hand side of  the equals sign mean. 
The symbol r stands for the distance between the centre of  the 
apple and the centre of  the Earth. It’s r2 because Newton discovered 
that the force depends on the square of  the distance between the 
objects. In non-mathematical language, this means that if  you dou-
ble the distance between the apple and the centre of  the Earth, the 
gravitational force drops by a factor of  4. If  you triple the distance, 
it drops by a factor of  9. And so on. Physicists call this behaviour an 
inverse square law. The symbols m1 and m2 stand for the mass of  
the apple and the mass of  the Earth, and their appearance encodes 
Newton’s recognition that the gravitational force of  attraction 
between two objects depends on the product of  their masses. That 
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then begs the question: what is mass? This is an interesting question 
in itself, and for the deepest answer available today we’ll need to 
wait until we talk about a quantum particle known as the Higgs 
boson. Roughly speaking, mass is a measure of  the amount of  
‘stuff ’ in something; the Earth is more massive than the apple. This 
kind of  statement isn’t really good enough, though. Fortunately 
Newton also provided a way of  measuring the mass of  an object 
independently of  his law of  gravitation, and it is encapsulated in the 
second of  his three laws of  motion, the ones so beloved of  every 
high school student of  physics:

1. Every object remains in a state of  rest or uniform motion 
in a straight line unless it is acted upon by a force;

2. An object of  mass m undergoes an acceleration a when 
acted upon by a force F . In the form of  an equation, this 
reads F = ma;

3. To every action there is an equal and opposite reaction.

Newton’s three laws provide a framework for describing the 
motion of  things under the influence of  a force. The first law 
describes what happens to an object when no forces act: the object 
either just sits still or moves in a straight line at constant speed. We 
shall be looking for an equivalent statement for quantum particles 
later on, and it’s not giving the game away too much to say that 
quantum particles do not just sit still – they leap around all over the 
place even when no forces are present. In fact, the very notion of  
‘force’ is absent in the quantum theory, and so Newton’s second law 
is bound for the wastepaper basket too. We do mean that, by the 
way – Newton’s laws are heading for the bin because they have been 
exposed as only approximately correct. They work well in many 
instances but fail totally when it comes to describing quantum phe-
nomena. The laws of  quantum theory replace Newton’s laws and 
furnish a more accurate description of  the world. Newton’s physics 
emerges out of  the quantum description, and it is important to real-
ize that the situation is not ‘Newton for big things and quantum for 
small’: it is quantum all the way.
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Although we aren’t really going to be very interested in Newton’s 
third law here, it does deserve a comment or two for the enthusiast. 
The third law says that forces come in pairs; if  I stand up then my 
feet press into the Earth and the Earth responds by pushing back. 
This implies that for a ‘closed’ system the net force acting on it is 
zero, and this in turn means that the total momentum of  the system 
is conserved. We shall use the concept of  momentum throughout 
this book and, for a single particle, it is defined to be the product of  the 
particle’s mass and its speed, which we write p = mv. Interestingly, 
momentum conservation does have some meaning in quantum 
theory, even though the idea of  force does not.

For now though, it is Newton’s second law that interests us. 
F = ma says that if  you apply a known force to something and 
measure its acceleration then the ratio of  the force to the acceler-
ation is its mass. This in turn assumes we know how to define force, 
but that is not so hard. A simple but not very accurate or practical 
way would be to measure force in terms of  the pull exerted by some 
standard thing; an average tortoise, let us say, walking in a straight 
line with a harness attaching it to the object being pulled. We could 
term the average tortoise the ‘SI Tortoise’ and keep it in a sealed 
box in the International Bureau of  Weights and Measures in Sèvres, 
France. Two harnessed tortoises would exert twice the force, three 
would exert three times the force and so on. We could then always 
talk about any push or pull in terms of  the number of  average tor-
toises required to generate it.

Given this system, which is ridiculous enough to be agreed on by 
any international committee of  standards,1 we can simply pull an 
object with a tortoise and measure its acceleration, and this will 
allow us to deduce its mass using Newton’s second law. We can then 
repeat the process for a second object to deduce its mass and then 
we can put both masses into the law of  gravity to determine the force 
between the masses due to gravity. To put a tortoise-equivalent 

1. But not so ridiculous when you consider that an oft-used unit of  power, even to 
this day, is the ‘horsepower’.
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number on the gravitational force between two masses, though, we 
would still need to calibrate the whole system to the strength of  
gravity itself, and this is where the symbol G comes in.

G is a very important number, called ‘Newton’s gravitational 
constant’, which encodes the strength of  the gravitational force. If  
we doubled G, we would double the force, and this would make the 
apple accelerate at double the rate towards the ground. It therefore 
describes one of  the fundamental properties of  our Universe and 
we would live in a very different Universe if  it took on a different 
value. It is currently thought that G takes the same value every-
where in the Universe, and that it has remained constant throughout 
all of  time (it appears in Einstein’s theory of  gravity too, where it is 
also a constant). There are other universal constants of  Nature that 
we’ll meet in this book. In quantum mechanics, the most important 
is Planck’s constant, named after quantum pioneer Max Planck and 
given the symbol h. We shall also need the speed of  light, c, which 
is not only the speed that light travels in a vacuum but the universal 
speed limit. ‘It is impossible to travel faster than the speed of  light 
and certainly not desirable,’ Woody Allen once said, ‘as one’s hat 
keeps blowing off.’

Newton’s three laws of  motion and the law of  gravitation are all 
that is needed to understand motion in the presence of  gravity. 
There are no other hidden rules that we did not state – just these 
few laws do the trick and allow us, for example, to understand the 
orbits of  the planets in our solar system. Together, they severely 
restrict the sort of  paths that objects are allowed to take when mov-
ing under the influence of  gravity. It can be proved using only 
Newton’s laws that all of  the planets, comets, asteroids and meteors 
in our solar system are only allowed to move along paths known as 
conic sections. The simplest of  these, and the one that the Earth 
follows to a very good approximation in its orbit around the Sun, 
is a circle. More generally, planets and moons move along orbital 
paths known as ellipses, which are like stretched circles. The other 
two conic sections are known as the parabola and the hyperbola. A 
parabola is the path that a cannonball takes when fired from the 
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cannon. The final conic section, the hyperbola, is the path that the 
most distant object ever constructed by human kind is now follow-
ing outwards to the stars. Voyager 1 is, at the time of  writing, around 
17, 610, 000, 000,17, 610, 000, 000,17, 610, 000, 000,17, 610, 000, 000 km from the Earth, and travelling away from the 
solar system at a speed of  538, 000, 000,17, 610, 000, 000,17, 610, 000, 000 km per year. This most beau-
tiful of  engineering achievements was launched in 1977 and is still in 
contact with the Earth, recording measurements of  the solar wind 
on a tape recorder and transmitting them back with a power of  
20 watts. Voyager 1, and her sister ship Voyager 2, are inspiring testa-
ments to the human desire to explore our Universe. Both spacecraft 
visited Jupiter and Saturn and Voyager 2 went on to visit Uranus and 
Neptune. They navigated the solar system with precision, using 
gravity to slingshot them beyond the planets and into interstellar 
space. Navigators here on Earth used nothing more than Newton’s 
laws to plot their courses between the inner and outer planets and 
outwards to the stars. Voyager 2 will sail close to Sirius, the brightest 
star in the skies, in just under 300, 000,17, 610, 000, 000 years. We did all this, and we 
know all this, because of  Newton’s theory of  gravity and his laws 
of  motion.

Newton’s laws provide us with a very intuitive picture of  the world. 
As we have seen, they take the form of  equations – mathematical 
relationships between measurable quantities  – that allow us to 
 predict with precision how objects move around. Inherent in the 
whole framework is the assumption that objects are, at any instant, 
located somewhere and that, as time passes, objects move smoothly 
around from place to place. This seems so self-evidently true that it 
is hardly worth commenting upon, but we need to recognize that 
this is a prejudice. Can we really be sure that things are definitely 
here or there, and that they are not actually in two different places 
at the same time? Of  course, your garden shed is not in any notice-
able sense sitting in two distinctly different places at once – but how 
about an electron in an atom? Could that be both ‘here’ and ‘there’? 
Right now that kind of  suggestion sounds crazy, mainly because we 
can’t picture it in our mind’s eye, but it will turn out to be the way 
things actually work. At this stage in our narrative, all we are doing 
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in making this strange-sounding statement is pointing out that 
Newton’s laws are built on intuition, and that is like a house built on 
sand as far as fundamental physics is concerned.

There is a very simple experiment, first conducted by Clinton 
Davisson and Lester Germer at Bell Laboratories in the United 
States and published in 1927, which shows that Newton’s intuitive 
picture of  the world is wrong. Although apples, planets and people 
certainly appear to behave in a ‘Newtonian’ way, gliding from place 
to place in a regular and predictable fashion as time unfolds, their 
experiment showed that the fundamental building blocks of  matter 
do not behave at all like this.

Davisson and Germer’s paper begins: ‘The intensity of  scattering 
of  a homogeneous beam of  electrons of  adjustable speed incident 
upon a single crystal of  nickel has been measured as a function of  
direction.’ Fortunately, there is a way to appreciate the key content 
of  their findings using a simplified version of  their experiment, 
known as the double-slit experiment. The experiment consists of  a 
source that sends electrons towards a barrier with two small slits (or 
holes) cut into it. On the other side of  the barrier, there is a screen 
that glows when an electron hits it. It doesn’t matter what the source 
of  electrons is, but practically speaking one can imagine a length of  
hot wire stretched out along the side of  the experiment.2 We’ve 
sketched the double-slit experiment in Figure 2.2.

Imagine pointing a camera at the screen and leaving the shutter 
open to take a long-exposure photograph of  the little flashes of  
light emitted as, one by one, the electrons hit it. A pattern will build 
up, and the simple question is, what is the pattern? Assuming elec-
trons are simply little particles that behave rather like apples or 
planets, we might expect the emergent pattern to look something 
like that shown in Figure 2.2. Some electrons go through the slits, 
most don’t. The ones that make it through might bounce off  the 

2. Once upon a time, televisions operated using this idea. A stream of  electrons 
generated by a hot wire was gathered, focused into a beam and accelerated by a 
magnetic field towards a screen that glowed when the electrons hit it.
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edge of  the slits a bit, which will spread them out, but the most hits, 
and therefore the brightest bits of  the photograph, will surely 
appear directly aligned with the two slits.

This isn’t what happens. Instead, the picture looks like Figure 2.3. 
A pattern like this is what Davisson and Germer published in their 
1927 paper. Davisson subsequently received the 1937 Nobel Prize for 
the ‘experimental discovery of  electron diffraction by crystals’. He 
shared the prize, not with Germer, but with George Paget Thomson, 
who saw the same pattern independently in experiments at the Uni-
versity of  Aberdeen. The alternating stripes of  light and dark are 

Figure 2.2: An electron-gun source fires electrons towards a pair of  slits and, if  the 
electrons behaved like ‘regular’ particles, we would expect to see hits on the screen 
that build up a pair of  stripes, as illustrated. Remarkably, this is not what happens.

Figure 2.3: In reality the electrons do not hit the screen aligned with the slits. Instead 
they form a stripy pattern: electron by electron, the stripes build up over time.
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known as an interference pattern, and interference is more usually 
associated with waves. To understand why, let’s imagine doing the 
double-slit experiment with water waves instead of  electrons.

Imagine a water tank with a wall midway down with two slits cut 
into it. The screen and camera could be replaced with a wave-height 
detector, and the hot wire with something that makes waves: a 
plank of  wood along the side of  the tank attached to a motor that 
keeps it dipping in and out of  the water would do. The waves from 
the plank will travel across the surface of  the water until they reach 
the wall. When a wave hits the wall, most of  it will bounce back, 
but two small pieces will pass through the slits. These two new 
waves will spread outwards from the slits towards the wave-height 
detector. Notice that we used the term ‘spread out’ here, because 
the waves don’t just carry on in a straight line from the slits. Instead, 
the slits act as two sources of  new waves, each issuing forth in ever 
increasing semi-circles. Figure 2.4 illustrates what happens.

Figure 2.4. An aerial view of  water waves emanating from two points in a tank of  
water (they are located at the top of  the picture). The two circular waves overlap 
and interfere with each other. The ‘spokes’ are the regions where the two waves 
have cancelled each other out and the water there remains undisturbed.
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The figure provides a striking visual demonstration of  the behav-
iour of  waves in water. There are regions where there are no waves 
at all, which seem to radiate out from the slits like the spokes of  a 
wheel, whilst other regions are still filled with the peaks and troughs 
of  the waves. The parallels with the pattern seen by Davisson, Ger-
mer and Thomson are striking. For the case of  electrons hitting the 
screen, the regions where few electrons are detected correspond to 
the places in the tank where the water surface remains flat – the 
spokes you can see radiating outwards in the figure.

In a tank of  water it is quite easy to understand how these spokes 
emerge: it is in the mixing and merging of  the waves as they spread 
out from the slits. Because waves have peaks and troughs, when two 
waves meet they can either add or subtract. If  two waves meet such 
that the peak of  one is aligned with the trough of  the other, they 
will cancel out and there will be no wave at that point. At a different 
place, the waves might arrive with their peaks in perfect alignment, 
and here they will add to produce a bigger wave. At each point in 
the water tank, the distance between it and the two slits will be a 
little different, which means that at some places the two waves will 
arrive with peaks together, at others with peaks and troughs aligned 
and, in most places, with some combination of  these two extremes. 
The result will be an alternating pattern; an interference pattern.

In contrast to water waves, the experimentally observed fact 
that electrons also produce an interference pattern is very difficult 
to understand. According to Newton and common sense, the elec-
trons emerge from the source, travel in straight lines towards the 
slits (because there are no forces acting on them – remember New-
ton’s first law), pass through with perhaps a slight deflection if  they 
glance off  the edge of  the slit, and continue in a straight line until 
they hit the screen. But this would not result in an interference 
 pattern – it would give the pair of  stripes as shown in Figure 2.2. 
Now we could suppose that there is some clever mechanism whereby 
the electrons exert a force on each other so as to deflect themselves 
from straight lines as they stream through the slits. But this can be 
ruled out because we can set the experiment up such that we send 
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just one electron at a time from source to screen. You would have to 
wait, but, slowly and surely, as the electrons hit the screen one after 
the other, the stripy pattern would build up. This is very surprising 
because the stripy pattern is absolutely characteristic of  waves inter-
fering with each other, yet it emerges one electron at a time – dot 
by dot. It’s a good mental exercise to try to imagine how it could 
be that, particle by particle, an interference pattern builds up as we 
fire tiny bullet-like particles at a pair of  slits in a screen. It’s a good 
exercise because it’s futile, and a few hours of  brain racking should 
convince you that a stripy pattern is inconceivable. Whatever those 
particles are that hit the screen, they are not behaving like ‘regular’ 
particles. It is as if  the electrons are in some sense ‘interfering with 
themselves’. The challenge for us is to come up with a theory that 
can explain what that means.

There is an interesting historical coda to this story, which provides 
a glimpse into the intellectual challenge raised by the double-slit 
experiment. George Paget Thomson was the son of  J. J. Thomson, 
who himself  received a Nobel Prize for his discovery of  the electron 
in 1899. J. J. Thomson showed that the electron is a particle, with a 
particular electric charge and a particular mass; a tiny, point-like 
grain of  matter. His son received the Nobel Prize forty years later 
for showing that the electron doesn’t behave as his father might 
have expected. Thomson senior was not wrong; the electron does 
have a well-defined mass and electric charge, and every time we see 
one it appears as a little point of  matter. It just doesn’t seem to 
behave exactly like a regular particle, as Davisson, Germer and 
Thomson junior discovered. Importantly, though, it doesn’t behave 
exactly like a wave either because the pattern is not built up as a 
result of  some smooth deposition of  energy; rather it is built out 
of  many tiny dots. We always detect Thomson senior’s single, 
point-like electrons.

Perhaps you can already see the need to engage with Heisen-
berg’s way of  thinking. The things we observe are particles, so we 
had better construct a theory of  particles. Our theory must also be 
able to predict the appearance of  the interference pattern that builds 
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up as the electrons, one after another, pass through the slits and hit 
the screen. The details of  how the electrons travel from source to 
slits to screen are not something we observe, and therefore need not 
be in accord with anything we experience in daily life. Indeed, the 
electron’s ‘journey’ need not even be something we can talk about 
at all. All we have to do is find a theory capable of  predicting that 
the electrons hit the screen in the pattern observed in the double-slit 
experiment. This is what we will do in the next chapter.

Lest we lapse into thinking that this is merely a fascinating piece 
of  micro-physics that has little relevance to the world at large, we 
should say that the quantum theory of  particles we develop to 
explain the double-slit experiment will also turn out to be capable 
of  explaining the stability of  atoms, the coloured light emitted from 
the chemical elements, radioactive decay, and indeed all of  the great 
puzzles that perplexed scientists at the turn of  the twentieth cen-
tury. The fact that our framework describes the way electrons 
behave when locked away inside matter will also allow us to under-
stand the workings of  quite possibly the most important invention 
of  the twentieth century: the transistor.

In the very final chapter of  this book, we will meet a striking 
application of  quantum theory that is one of  the great demonstra-
tions of  the power of  scientific reasoning. The more outlandish 
predictions of  quantum theory usually manifest themselves in the 
behaviour of  small things. But, because large things are made of  
small things, there are certain circumstances in which quantum 
physics is required to explain the observed properties of  some of  
the most massive objects in the Universe  – the stars. Our Sun is 
fighting a constant battle with gravity. This ball of  gas a third of  a 
million times more massive than our planet has a gravitational force at 
its surface that is almost twenty-eight times that at the Earth, which 
provides a powerful incentive for it to collapse in on itself. The col-
lapse is prevented by the outward pressure generated by nuclear 
fusion reactions deep within the solar core as 600 million tonnes of  
hydrogen are converted into helium every second. Vast though our 
star is, burning fuel at such a ferocious rate must ultimately have 
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consequences, and one day the Sun’s fuel source will run out. The 
outward pressure will then cease and the force of  gravity will 
reassert its grip unopposed. It would seem that nothing in Nature 
could stop a catastrophic collapse.

In reality, quantum physics steps in and saves the day. Stars that 
have been rescued by quantum effects in this way are known as 
white dwarves, and such will be the final fate of  our Sun. At the end 
of  this book we will employ our understanding of  quantum 
mechanics to determine the maximum mass of  a white dwarf  star. 
This was first calculated, in 1930, by the Indian astrophysicist Sub-
rahmanyan Chandrasekhar, and it turns out to be approximately 
1.4 times the mass of  our Sun. Quite wonderfully, that number can 
be computed using only the mass of  a proton and the values of  the 
three constants of  Nature we have already met: Newton’s gravita-
tional constant, the speed of  light, and Planck’s constant.

The development of  the quantum theory itself  and the measure-
ment of  these four numbers could conceivably have been achieved 
without ever looking at the stars. It is possible to imagine a particu-
larly agoraphobic civilization confined to deep caves below the 
surface of  their home planet. They would have no concept of  a sky, 
but they could have developed quantum theory. Just for fun, they 
may even decide to calculate the maximum mass of  a giant sphere 
of  gas. Imagine that, one day, an intrepid explorer chooses to ven-
ture above ground for the first time and gaze in awe at the spectacle 
above: a sky full of  lights; a galaxy of  a hundred billion suns arcing 
from horizon to horizon. The explorer would find, just as we have 
found from our vantage point here on Earth, that out there amongst 
the many fading remnants of  dying stars there is not a single one 
with a mass exceeding the Chandrasekhar limit.



3.  What Is a Particle?

Our approach to quantum theory was pioneered by Richard Feyn-
man, the Nobel Prize-winning, bongo-playing New Yorker described 
by his friend and collaborator Freeman Dyson as ‘half  genius, half  
buffoon’. Dyson later changed his opinion: Feynman could be more 
accurately described as ‘all genius, all buffoon’. We will follow his 
approach in our book because it is fun, and probably the simplest 
route to understanding our Quantum Universe.

As well as being responsible for the simplest formulation of  quan-
tum mechanics, Richard Feynman was also a great teacher, able to 
transfer his deep understanding of  physics to the page or lecture 
theatre with unmatched clarity and a minimum of  fuss. His style 
was contemptuous of  those who might seek to make physics more 
complicated than it need be. Even so, at the beginning of  his classic 
undergraduate textbook series The Feynman Lectures on Physics, he 
felt the need to be perfectly honest about the counterintuitive nature 
of  the quantum theory. Subatomic particles, Feynman wrote, ‘do 
not behave like waves, they do not behave like particles, they do not 
behave like clouds, or billiard balls, or weights on springs, or like 
anything that you have ever seen’. Let’s get on with building a model 
for exactly how they do behave.

As our starting point we will assume that the elemental building 
blocks of  Nature are particles. This has been confirmed not only by 
the double-slit experiment, where the electrons always arrive at spe-
cific places on the screen, but by a whole host of  other experiments. 
Indeed ‘particle physics’ is not called that for nothing. The question 
we need to address is: how do particles move around? Of  course, 
the simplest assumption would be that they move in nice straight 
lines, or curved lines when acted upon by forces, as dictated by 
Newton. This cannot be correct though, because any explanation 
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of  the double-slit experiment requires that the electrons ‘interfere 
with themselves’ when they pass through the slits, and to do that 
they must in some sense be spread out. This therefore is the chal-
lenge: build a theory of  point-like particles such that those same 
particles are also spread out. This is not as impossible as it sounds: 
we can do it if  we let any single particle be in many places at once. Of  
course, that may still sound impossible, but the proposition that a 
particle should be in many places at once is actually a rather clear 
statement, even if  it sounds silly. From now on, we’ll refer to these 
counterintuitive, spread-out-yet-point-like particles as quantum 
particles.

With this ‘a particle can be in more than one place at once’ pro-
posal, we are moving away from our everyday experience and into 
uncharted territory. One of  the major obstacles to developing 
an  understanding of  quantum physics is the confusion this kind 
of  thinking can engender. To avoid confusion, we should follow 
Heisenberg and learn to feel comfortable with views of  the world 
that run counter to tangible experience. Feeling ‘uncomfortable’ 
can be mistaken for ‘confusion’, and very often students of  quan-
tum physics continue to attempt to understand what is happening 
in everyday terms. It is the resistance to new ideas that actually leads 
to confusion, not the inherent difficulty of  the ideas themselves, 
because the real world simply doesn’t behave in an everyday way. 
We must therefore keep an open mind and not be distressed by all 
the weirdness. Shakespeare had it right when Hamlet says, ‘And 
therefore as a stranger give it welcome. There are more things in 
heaven and earth, Horatio, Than are dreamt of  in your philosophy.’

A good way to begin is to think carefully about the double-slit 
experiment for water waves. Our aim will be to work out just what 
it is about waves that causes the interference pattern. We should 
then make sure that our theory of  quantum particles is capable 
of  encapsulating this behaviour, so that we can have a chance of  
explaining the double-slit experiment for electrons.

There are two reasons why waves journeying through two slits 
can interfere with themselves. The first is that the wave travels 
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through both of  the slits at once, creating two new waves that head 
off  and mix together. It’s obvious that a wave can do this. We have 
no problem visualizing one long, ocean wave rolling to the shore 
and crashing on to a beach. It is a wall of  water; an extended, trav-
elling thing. We are therefore going to need to decide how to make 
our quantum particle ‘an extended, travelling thing’. The second 
reason is that the two new waves heading out from the slits are able 
either to add or to subtract from each other when they mix. This 
ability for two waves to interfere is clearly crucial in explaining the 
interference pattern. The extreme case is when the peak of  one 
wave coincides with the trough of  another, in which case they com-
pletely cancel each other out. So we are also going to need to allow 
our quantum particle to interfere somehow with itself.

The double-slit experiment connects the behaviour of  electrons 
and the behaviour of  waves, so let us see how far we can push the 
connection. Take a look at Figure 3.1 and, for the time being, ignore 
the lines joining A to E and B to F and concentrate on the waves. 
The figure could then describe a water tank, with the wavy lines 
representing, from left to right, how a water wave rolls its way 
across the tank. Imagine taking a photograph of  the tank just after 

Figure 3.1. How the wave describing an electron moves from source to screen and 
how it should be interpreted as representing all of  the ways that the electron 
travels. The paths A to C to E and B to D to F illustrate just two of  the infinity of  
possible paths the single electron does take.
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a plank of  wood has splashed in on the left-hand side to make a 
wave. The snapshot would reveal a newly formed wave that extends 
from top to bottom in the picture. All the water in the rest of  the 
tank would be calm. A second snapshot taken a little later reveals 
that the water wave has moved towards the slits, leaving flat water 
behind it. Later still, the water wave passes through the pair of  slits 
and generates the stripy interference pattern illustrated by the wavy 
lines on the far right.

Now let us reread that last paragraph but replace ‘water wave’ 
with ‘electron wave’, whatever that may mean. An electron wave, 
suitably interpreted, has the potential to explain the stripy pattern 
we want to understand as it rolls through the experiment like a 
water wave. But we do need to explain why the electron pattern is 
made up of  tiny dots as the electrons hit the screen one by one. At 
first sight that seems in conflict with the idea of  a smooth wave, but 
it is not. The clever bit is to realize that we can offer an explanation 
if  we interpret the electron wave not as a real material disturbance 
(as is the case with a water wave), but rather as something that 
simply informs us where the electron is likely to be found. Notice 
we said ‘the’ electron because the wave is to describe the behaviour 
of  a single electron – that way we have a chance of  explaining how 
those dots emerge. This is an electron wave, and not a wave of  elec-
trons: we must never fall into the trap of  thinking otherwise. If  we 
imagine a snapshot of  the wave at some instant in time, then we 
want to interpret it such that where the wave is largest the electron 
is most likely to be found, and where the wave is smallest the elec-
tron is least likely to be found. When the wave finally reaches the 
screen, a little spot appears and informs us of  the location of  the 
electron. The sole job of  the electron wave is to allow us to com-
pute the odds that the electron hits the screen at some particular 
place. If  we do not worry about what the electron wave actually ‘is’, 
then everything is straightforward because once we know the wave 
then we can say where the electron is likely to be. The fun comes 
next, when we try to understand what this proposal for an electron 
wave implies for the electron’s journey from slit to screen.
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Before we do this, it might be worth reading the above paragraph 
again because it is very important. It’s not supposed to be obvious 
and it is certainly not intuitive. The ‘electron wave’ proposal has all 
the necessary properties to explain the appearance of  the experi-
mentally observed interference pattern, but it is something of  a 
guess as to how things might work out. As good physicists we 
should work out the consequences and see if  they correspond to 
Nature.

Returning to Figure 3.1, we have proposed that at each instant in 
time the electron is described by a wave, just as in the case of  water 
waves. At an early time, the electron wave is to the left of  the slits. 
This means that the electron is in some sense located somewhere 
within the wave. At a later time, the wave will advance towards the 
slits just as the water wave did, and the electron will now be some-
where in the new wave. We are saying that the electron ‘could be 
first at A and then at C’, or it ‘could be first at B and then at D’, or it 
‘could be at A and then at D’, and so on. Hold that thought for a 
minute, and think about an even later time, after the wave has 
passed through the slits and reached the screen. The electron could 
now be found at E or perhaps at F. The curves that we have drawn 
on the diagram represent two possible paths that the electron could 
have taken from the source, through the slits and onto the screen. It 
could have gone from A to C to E, and it could have gone from B to 
D to F. These are just two out of  an infinite number of  possible 
paths that the electron could have taken.

The crucial point is that it makes no sense to say that ‘the elec-
tron could have ventured along each of  these routes, but really it 
went along only one of  them’. To say that the electron really ven-
tured along one particular path would be to give ourselves no more 
of  a chance of  explaining the interference pattern than if  we had 
blocked up one of  the slits in the water wave experiment. We need 
to allow the wave to go through both slits in order to get an interfer-
ence pattern, and this means that we must allow all the possible 
paths for the electron to travel from source to screen. Put another 
way, when we said that the electron is ‘somewhere within the wave’ 
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we really meant to say that it is simultaneously everywhere in the 
wave! This is how we must think because if  we suppose the electron 
is actually located at some specific point, then the wave is no longer 
spread out and we lose the water wave analogy. As a result, we can-
not explain the interference pattern.

Again, it might be worth rereading the above piece of  reasoning 
because it motivates much of  what follows. There is no sleight of  
hand: what we are saying is that we need to describe a spread-out 
wave that is also a point-like electron, and one possible way to 
achieve this is to say that the electron sweeps from source to screen 
following all possible paths at once.

This suggests that we should interpret an electron wave as describ-
ing a single electron that travels from source to screen by an infinity 
of  different routes. In other words, the correct answer to the ques-
tion ‘how did that electron get to the screen’ is ‘it travelled by an 
infinity of  possible routes, some of  which went through the upper 
slit and some of  which went though the lower one’. Clearly the ‘it’ 
that is the electron is not an ordinary, everyday particle. This is what 
it means to be a quantum particle.

Having decided to seek a description of  an electron that mimics 
in many ways the behaviour of  waves, we need to develop a more 
precise way to talk about waves. We shall begin with a description 
of  what is happening in a water tank when two waves meet, mix 
and interfere with each other. To do this, we must find a convenient 
way of  representing the positions of  the peaks and troughs of  each 
wave. In the technical jargon, these are known as phases. Colloqui-
ally things are described as ‘in phase’ if  they reinforce one another 
in some way, or ‘out of  phase’ if  they cancel each other out. The 
word is also used to describe the Moon: over the course of  around 
twenty-eight days, the Moon passes from new to full and back again 
in a continuous waxing and waning cycle. The etymology of  the 
word ‘phase’ stems from the Greek phasis, which means the appear-
ance and disappearance of  an astronomical phenomenon, and the 
regular appearance and disappearance of  the bright lunar surface 
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seems to have led to its twentieth-century usage, particularly in sci-
ence, as a description of  something cyclical. And this is a clue as to 
how we might find a pictorial representation of  the positions of  the 
peaks and troughs of  water waves.

Have a look at Figure 3.2. One way to represent a phase is as a 
clock face with a single hand rotating around. This gives us the free-
dom to represent visually a full 360 degrees worth of  possibilities: 
the clock hand can point to 12 o’clock, 3 o’clock, 9 o’clock and all 
points in between. In the case of  the Moon, you could imagine a 
new Moon represented by a clock hand pointing to 12 o’clock, a 
waxing crescent at 1:30, the first quarter at 3, the waxing gibbous 

Figure 3.2. The phases of  the Moon.
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at 4:30, the full Moon at 6 and so on. What we are doing here is using 
something abstract to describe something concrete; a clock face to 
describe the phases of  the Moon. In this way we could draw a clock 
with its hand pointing to 12 o’clock and you’d immediately know 
that the clock represented a new Moon. And even though we haven’t 
actually said it, you’d know that a clock with the hand pointing to 
5 o’clock would mean that we are approaching a full Moon. The 
use of  abstract pictures or symbols to represent real things is abso-
lutely fundamental in physics – this is essentially what physicists use 
mathematics for. The power of  the approach comes when the 
abstract pictures can be manipulated using simple rules to make 
firm predictions about the real world. As we’ll see in a moment, the 
clock faces will allow us to do just this because they are able to keep 
track of  the relative positions of  the peaks and troughs of  waves. 
This in turn will allow us to calculate whether they will cancel or 
reinforce one another when they meet.

Figure 3.3 shows a sketch of  two water waves at an instant in 
time. Let’s represent the peaks of  the waves by clocks reading 
12 o’clock and the troughs by clocks reading 6 o’clock. We can also 
represent places on the waves intermediate between peaks and 
troughs with clocks reading intermediate times, just as we did for 
the phases of  the Moon between new and full. The distance between 
the successive peaks and troughs of  the wave is an important num-
ber; it is known as the wavelength of  the wave.

The two waves in Figure 3.3 are out of  phase with each other, 
which means that the peaks of  the top wave are aligned with the 
troughs of  the bottom wave, and vice versa. As a result it is pretty 
clear that they will entirely cancel each other out when we add 
them together. This is illustrated at the bottom of  the figure, where 
the ‘wave’ is flat-lining. In terms of  clocks, all of  the 12 o’clock 
clocks for the top wave, representing its peaks, are aligned with the 
6 o’clock clocks for the bottom wave, representing its troughs. In 
fact, everywhere you look, the clocks for the top wave are pointing 
in the opposite direction to the clocks for the bottom wave.

Using clocks to describe waves does, at this stage, seem like we 
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are over-complicating matters. Surely if  we want to add together 
two water waves, then all we need to do is add the heights of  each 
of  the waves and we don’t need clocks at all. This is certainly true 
for water waves, but we are not being perverse and we have intro-
duced the clocks for a very good reason. We will discover soon 
enough that the extra flexibility they allow is absolutely necessary 
when we come to use them to describe quantum particles.

With this in mind, we shall now spend a little time inventing a 
precise rule for adding clocks. In the case of  Figure 3.3, the rule must 
result in all the clocks ‘cancelling out’, leaving nothing behind: 
12 o’clock cancels 6 o’clock, 3 o’clock cancels 9 o’clock and so on. 
This perfect cancellation is, of  course, for the special case when the 

Figure 3.3. Two waves arranged such that they cancel out completely. The top 
wave is out of  phase with the second wave, i.e. peaks align with troughs. When 
the two waves are added together they cancel out to produce nothing – as illus-
trated at the bottom where the ‘wave’ is flat-lining.

+ ++ + + ++ + +
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waves are perfectly out of  phase. Let’s search for a general rule that 
will work for the addition of  waves of  any alignment and shape.

Figure 3.4 shows two more waves, this time aligned in a different 
way, such that one is only slightly offset against the other. Again, we 
have labelled the peaks, troughs and points in between with clocks. 
Now, the 12 o’clock clock of  the top wave is aligned with the 3 o’clock 
clock of  the bottom wave. We are going to state a rule that allows 
us to add these two clocks together. The rule is that we take the two 
hands and stick them together head to tail. We then complete the 
triangle by drawing a new hand joining the other two hands 
together. We have sketched this recipe in Figure 3.5. The new hand 
will be a different length to the other two, and point in a different 
direction; it is a new clock face, which is the sum of  the other two.

We can be more precise now and use simple trigonometry to cal-
culate the effect of  adding together any specific pair of  clocks. In 
Figure 3.5 we are adding together the 12 o’clock and 3 o’clock clocks. 
Let’s suppose that the original clock hands are of  length 1 cm (cor-

√2

1

1

Figure 3.4. Two waves offset relative to each other. The top and middle waves add 
together to produce the bottom wave.
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responding to water waves of  peak height equal to 1 cm). When we 
place the hands head-to-tail we have a right-angled triangle with 
two sides each of  length 1 cm. The new clock hand will be the length 
of  the third side of  the triangle: the hypotenuse. Pythagoras’ The-
orem tells us that the square of  the hypotenuse is equal to the sum 
of  the squares of  the other two sides: h2 = x2 + y2. Putting the 
numbers in, h2 = 12 + 12 = 2. So the length of  the new clock hand h 
is the square root of  2, which is approximately 1.414 cm cm. In what 
 direction will the new hand point? For this we need to know the 
angle in our triangle, labelled θ in the figure. For the particular 
example of  two hands of  equal length, one pointing to 12 o’clock 
and one to 3 o’clock, you can probably work it out without knowing 
any trigonometry at all. The hypotenuse obviously points at an 
angle of  45 degrees, so the new ‘time’ is half  way between 12 o’clock 
and 3 o’clock, which is half  past one. This example is a special case, 
of  course. We chose the clocks so that the hands were at right angles 
and of  the same length to make the mathematics easy. But it is obvi-
ously possible to work out the length of  the hand and time resulting 
from the addition of  any pair of  clock faces.

Now look again at Figure 3.4. At every point along the new wave, 
we can compute the wave height by adding the clocks together 
using the recipe we just outlined and asking how much of  the new 
clock hand points in the 12 o’clock direction. When the clock points 
to 12 o’clock this is obvious – the height of  the wave is simply the 
length of  the clock hand. Similarly at 6 o’clock, it’s obvious because 
the wave has a trough with a depth equal to the length of  the hand. 

√2
1

1

1
1

=+

Figure 3.5. The rule for adding clocks.
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It’s also pretty obvious when the clock reads 3 o’clock (or 9 o’clock) 
because then the wave height is zero, since the clock hand is at right 
angles to the 12 o’clock direction. To compute the wave height 
described by any particular clock we should multiply the length of  
the hand, h, by the cosine of  the angle the hand makes with the
12 o’clock direction. For example, the angle that a 3 o’clock makes 
with 12 o’clock is 90 degrees and the cosine of  90 degrees is zero, 
which means the wave height is zero. Similarly, a time of  half-past-
one corresponds to an angle of  45 degrees with the 12 o’clock 
direction and the cosine of  45 degrees is approximately 0.707, so the 
height of  the wave is 0.707 times the length of  the hand (notice that 
0.707 is 1/

√
2). If  your trigonometry is not up to those last few sen-

tences then you can safely ignore the details. It’s the principle that 
matters, which is that, given the length of  a clock hand and its dir-
ection you can go ahead and calculate the wave height – and even if  
you don’t understand trigonometry you could make a good stab at 
it by carefully drawing the clock hands and projecting on to the 
12 o’clock direction using a ruler. (We would like to make it very clear 
to any students reading this book that we do not recommend this 
course of  action: sines and cosines are useful things to understand.)

That’s the rule for adding clocks, and it works a treat, as illus-
trated in the bottom of  the three pictures in Figure 3.4, where we 
have repeatedly applied the rule for various points along the waves.

In this description of  water waves, all that ever matters is the pro-
jection of  the ‘time’ in the 12 o’clock direction, corresponding to 

Figure 3.6. Three different clocks all with the same projection in the 12 o’clock 
direction.
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just one number: the wave height. That is why the use of  clocks is 
not really necessary when it comes to describing water waves. Take 
a look at the three clocks in Figure 3.6: they all correspond to the 
same wave height and so they provide equivalent ways of  represent-
ing the same height of  water. But clearly they are different clocks 
and, as we shall see, these differences do matter when we come to 
use them to describe quantum particles because, for them, the length 
of  the clock hand (or equivalently the size of  the clock) has a very 
important interpretation.

At some points in this book and at this point especially, things are 
abstract. To keep ourselves from succumbing to dizzying confu-
sion, we should remember the bigger picture. The experimental 
results of  Davisson, Germer and Thomson, and their similarity 
with the behaviour of  water waves, have inspired us to make an 
ansatz: we should represent a particle by a wave, and the wave itself  
can be represented by lots of  clocks. We imagine that the electron 
wave propagates ‘like a water wave’, but we haven’t explained how 
that works in any detail. But then we never said how the water wave 
propagates either. All that matters for the moment is that we recog-
nize the analogy with water waves, and the notion that the electron 
is described at any instant by a wave that propagates and interferes 
like water waves do. In the next chapter we will do better than this 
and be more precise about how an electron actually moves around 
as time unfolds. In doing that we will be led to a host of  treasures, 
including Heisenberg’s famous Uncertainty Principle.

Before we move on to that, we want to spend a little time talking 
about the clocks that we are proposing to represent the electron 
wave. We emphasize that these clocks are not real in any sense, and 
their hour hand has absolutely nothing to do with what time of  day 
it is. This idea of  using an array of  little clocks to describe a real 
physical phenomenon is not so bizarre a concept as it may seem. 
Physicists use similar techniques to describe many things in Nature, 
and we have already seen how they can be used to describe water 
waves.

Another example of  this type of  abstraction is the description of  
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the temperature in a room, which can be represented using an array 
of  numbers. The numbers do not exist as physical objects any more 
than our clocks do. Instead, the set of  numbers and their association 
with points in the room is simply a convenient way of  representing 
the temperature. Physicists call this mathematical structure a field. 
The temperature field is simply an array of  numbers, one for every 
point. In the case of  a quantum particle, the field is more compli-
cated because it requires a clock face at each point rather than a 
single number. This field is usually called the wavefunction of  the 
particle. The fact that we need an array of  clocks for the wavefunc-
tion, whilst a single number would suffice for the temperature field 
or for water waves, is an important difference. In physics jargon, the 
clocks are there because the wavefunction is a ‘complex’ field, whilst 
the temperature or water wave heights are both ‘real’ fields. We 
shall not need any of  this language, because we can work with the 
clock faces.1

We should not worry that we have no direct way to sense a wave-
function, in contrast to a temperature field. The fact that it is not 
something we can touch, smell or see directly is irrelevant. Indeed, 
we would not get very far in physics if  we decided to restrict our 
description of  the Universe to things we can directly sense.

In our discussion of  the double-slit experiment for electrons, we 
said that the electron wave is largest where the electron is most 
likely to be. This interpretation allowed us to appreciate how the 
stripy interference pattern can be built up dot by dot as the elec-
trons arrive. But this is not a precise enough statement for our 
purposes now. We want to know what the probability is to find an 
electron at a particular point – we want to put a number on it. This 
is where the clocks become necessary, because the probability that 
we want is not simply the wave height. The correct thing to do is to 

1. For those who are familiar with mathematics, just exchange the words as fol-
lows: ‘clock’ for ‘complex number’, ‘size of  the clock’ for ‘modulus of  the complex 
number’ and ‘the direction of  the hour-hand’ for ‘the phase’. The rule for adding 
clocks is nothing more than the rule for adding complex numbers.



41

What Is a Particle?

interpret the square of  the length of  the clock hand as the probabil-
ity to find the particle at the site of  the clock. This is why we need 
the extra flexibility that the clocks give us over simple numbers. 
That interpretation is not meant to be at all obvious, and we cannot 
offer any good explanation for why it is correct. In the end, we know 
that it is correct because it leads to predictions that agree with 
experimental data. This interpretation of  the wavefunction was one 
of  the thorny issues facing the early pioneers of  quantum theory.

The wavefunction (that is our cluster of  clocks) was introduced 
into quantum theory in a series of  papers published in 1926 by the 
Austrian physicist Erwin Schrödinger. His paper of  21 June contains 
an equation that should be etched into the mind of  every under-
graduate physics student. It is known, naturally enough, as the 
Schrödinger equation:

ih̄
∂

∂t
Ψ = ĤΨ

The Greek symbol Ψ (pronounced ‘psi’) represents the wavefunc-
tion, and the Schrödinger equation describes how it changes as time 
passes. The details of  the equation are irrelevant for our purposes 
because we are not going to follow the Schrödinger approach in this 
book. What is interesting, though, is that, although Schrödinger 
wrote down the correct equation for the wavefunction, he initially 
got the interpretation wrong. It was Max Born, one of  the oldest of  
the physicists working on the quantum theory in 1926, who, at the 
grand old age of  forty-three, gave the correct interpretation in a 
paper submitted just four days after Schrödinger’s. We mention his 
age because quantum theory during the mid 1920s gained the nick-
name ‘Knabenphysik’ – ‘boy physics’ – because so many of  the key 
protagonists were young. In 1925 Heisenberg was twenty-three, 
Wolfgang Pauli, whose famous Exclusion Principle we shall meet 
later on, was twenty-two, as was Paul Dirac, the British physicist 
who first wrote down the correct equation describing the electron. 
It is often claimed that their youth freed them from the old ways of  
thinking and allowed them fully to embrace the radical new picture 
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of  the world represented by quantum theory. Schrödinger, at thirty-
eight, was an old man in this company and it is true that he was 
never completely at ease with the theory he played such a key role 
in developing.

Born’s radical interpretation of  the wavefunction, for which he 
received the Nobel Prize for physics in 1954, was that the square 
of the length of  the clock hand at a particular point represents the 
probability of  finding a particle there. For example, if  the hour-hand 
on the clock located at some place has a length of  0.1 then squaring 
this gives 0.01. This means that the probability to find the particle at 
this place is 0.01, i.e. one in a hundred. You might ask why Born 
didn’t just square the clocks up in the first place, so that in the last 
example the clock hand would itself  have a length of  0.01. That will 
not work, because to account for interference we are going to want 
to add clocks together and adding 0.01 to 0.01 say (which gives 0.02) 
is not the same as adding 0.1 to 0.1 and then squaring (which gives 
0.04).

We can illustrate this key idea in quantum theory with another 
example. Imagine doing something to a particle such that it is 
described by a specific array of  clocks. Also imagine we have a device 
that can measure the location of  particles. A simple-to-imagine-but-
not-so-simple-to-build device might be a little box that we can 
rapidly erect around any region of  space. If  the theory says that the 
chance of  finding a particle at some point is 0.01 (because the clock 
hand at that point has length 0.1), then when we erect the box 
around that point we have a one in a hundred chance of  finding the 
particle inside the box afterwards. This means that it is unlikely that 
we’ll find anything in the box. However, if  we are able to reset the 
experiment by setting everything up such that the particle is once 
again described by the same initial set of  clocks, then we could redo 
the experiment as many times as we wish. Now, for every 100 times 
we look in the little box we should, on average, discover that there 
is a particle inside it once – it will be empty the remaining ninety-
nine times.

The interpretation of  the squared length of  the clock hand as the 
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probability to find a particle at a particular place is not particularly 
difficult to grasp, but it does seem as if  we (or to be more precise, 
Max Born) plucked it out of  the blue. And indeed, from a historical 
perspective, it proved very difficult for some great scientists, Einstein 
and Schrödinger among them, to accept. Looking back on the sum-
mer of  1926, fifty years later, Dirac wrote: ‘This problem of  getting 
the interpretation proved to be rather more difficult than just work-
ing out the equations.’ Despite this difficulty, it is noteworthy that 
by the end of  1926 the spectrum of  light emitted from the hydrogen 
atom, one of  the great puzzles of  nineteenth-century physics, had 
already been computed using both Heisenberg’s and Schrödinger’s 
equations (Dirac eventually proved that their two approaches were 
in all cases entirely equivalent).

Einstein famously expressed his objection to the probabilistic 
nature of  quantum mechanics in a letter to Born in December 1926. 
‘The theory says a lot but does not really bring us any closer to the 
secret of  the “old one”. I, at any rate, am convinced that He is not 
playing at dice.’ The issue was that, until then, it had been assumed 
that physics was completely deterministic. Of  course, the idea of  
probability is not exclusive to quantum theory. It is regularly used in 
a variety of  situations, from gambling on horse races to the science 
of  thermodynamics, upon which whole swathes of  Victorian engin-
eering rested. But the reason for this is a lack of  knowledge about 
the part of  the world in question, rather than something fundamen-
tal. Think about tossing a coin – the archetypal game of  chance. We 
are all familiar with probability in this context. If  we toss the coin 
100 times, we expect, on average, that fifty times it will land heads 
and fifty times tails. Pre-quantum theory, we were obliged to say 
that, if  we knew everything there is to know about the coin – the 
precise way we tossed it into the air, the pull of  gravity, the details of  
little air currents that swish through the room, the temperature of  
the air, etc. – then we could, in principle, work out whether the coin 
would land heads or tails. The emergence of  probabilities in this con-
text is therefore a reflection of  our lack of  knowledge about the 
system, rather than something intrinsic to the system itself.
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The probabilities in quantum theory are not like this at all; they 
are fundamental. It is not the case that we can only predict the prob-
ability of  a particle being in one place or another because we are 
ignorant. We can’t, even in principle, predict what the position of  a 
particle will be. What we can predict, with absolute precision, is the 
probability that a particle will be found in a particular place if  we 
look for it. More than that, we can predict with absolute precision 
how this probability changes with time. Born expressed this beauti-
fully in 1926: ‘The motion of  particles follows probability laws but 
the probability itself  propagates according to the law of  causality.’ 
This is exactly what Schrödinger’s equation does: it is an equation 
that allows us to calculate exactly what the wavefunction will look 
like in the future, given what it looks like in the past. In that sense, 
it is analogous to Newton’s laws. The difference is that, whilst New-
ton’s laws allow us to calculate the position and speed of  particles at 
any particular time in the future, quantum mechanics allows us to 
calculate only the probability that they will be found at a particular 
place.

This loss of  predictive power was what bothered Einstein and 
many of  his colleagues. With the benefit of  over eighty years of  
hindsight and a great deal of  hard work, the debate now seems 
somewhat redundant, and it is easy to dismiss it with the statement 
that Born, Heisenberg, Pauli, Dirac and others were correct and 
Einstein, Schrödinger and the old guard were wrong. But it was 
 certainly possible back then to believe that quantum theory was 
incomplete in some way, and that the probabilities appear, just as in 
thermodynamics or coin tossing, because there is some informa-
tion about the particles that we are missing. Today that idea gains 
little purchase – theoretical and experimental progress indicate that 
Nature really does use random numbers, and the loss of  certainty in 
predicting the positions of  particles is an intrinsic property of  the 
physical world: probabilities are the best we can do.



4.  Everything That Can Happen Does Happen

We’ve now set up a framework within which we can explore quan-
tum theory in detail. The key ideas are very simple in their technical 
content, but tricky in the way they challenge us to confront our 
prejudices about the world. We have said that a particle is to be rep-
resented by lots of  little clocks dotted around and that the length of  
the clock hand at a particular place (squared) represents the prob-
ability that the particle will be found at that place. The clocks are 
not the main point – they are a mathematical device we’ll use to 
keep track of  the odds on finding a particle somewhere. We also 
gave a rule for adding clocks together, which is necessary to describe 
the phenomenon of  interference. We now need to tie up the final 
loose end, and look for the rule that tells us how the clocks change 
from one moment to the next. This rule will be the replacement of  
Newton’s first law, in the sense that it will allow us to predict what a 
particle will do if  we leave it alone. Let’s begin at the beginning and 
imagine placing a single particle at a point.

We know how to represent a particle at a point, and this is shown 
in Figure 4.1. There will be a single clock at that point, with a hand 
of  length 1 (because 1 squared is 1 and that means the probability to 
find the particle there is equal to 1, i.e. 100 per cent). Let’s suppose 
that the clock reads 12 o’clock, although this choice is completely 

X
1

Figure 4.1. The single clock representing a particle that is definitely located at a 
particular point in space.
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arbitrary. As far as the probability is concerned, the clock hand can 
point in any direction, but we have to choose something to start 
with, so 12 o’clock will do. The question we want to answer is the 
following: what is the chance that the particle will be located some-
where else at a later time? In other words, how many clocks do we 
have to draw, and where do we have to place them, at the next 
moment? To Isaac Newton, this would have been a very dull ques-
tion; if  we place a particle somewhere and do nothing to it, then it’s 
not going to go anywhere. But Nature says, quite categorically, that 
this is simply wrong. In fact, Newton could not be more wrong.

Here is the correct answer: the particle can be anywhere else in the 
Universe  at  the  later  time. That means we have to draw an infinite 
number of  clocks, one at every conceivable point in space. That sen-
tence is worth reading lots of  times. Probably we need to say more.

Allowing the particle to be anywhere at all is equivalent to assum-
ing nothing about the motion of  the particle. This is the most 
unbiased thing we can do, and that does have a certain ascetic appeal 
to it,1 although admittedly it does seem to violate the laws of  com-
mon sense, and perhaps the laws of  physics as well.

A clock is a representation of  something definite – the likelihood 
that a particle will be found at the position of  the clock. If  we know 
that a particle is at one particular place at a particular time, we rep-
resent it by a single clock at that point. The proposal is that if  we 
start with a particle sitting at a definite position at time zero, then at 
‘time zero plus a little bit’ we should draw a vast, indeed infinite, 
array of  new clocks, filling the entire Universe. This admits the pos-
sibility that the particle hops off  to anywhere and everywhere else in 
an instant. Our particle will simultaneously be both a nanometre 
away and also a billion light years away in the heart of  a star in a 
distant galaxy. This sounds, to use our native northern vernacular, 
daft. But let’s be very clear: the theory must be capable of  explain-
ing the double-slit experiment and, just as a wave spreads out if  we 
dip a toe into still water, so an electron initially located somewhere 

1. Or aesthetic appeal, depending on your point of  view.
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must spread out as time passes. What we need to establish is exactly 
how it spreads.

Unlike a water wave, we are proposing that the electron wave 
spreads out to fill the Universe in an instant. Technically speaking, 
we’d say that the rule for particle propagation is different from the 
rule for water wave propagation, although both propagate accord-
ing to a ‘wave equation’. The equation for water waves is different 
from the equation for particle waves (which is the famous Schrödinger 
equation we mentioned in the last chapter), but both encode wavy 
physics. The differences are in the details of  how things propagate 
from place to place. Incidentally, if  you know a little about Einstein’s 
theory of  relativity you might be getting nervous when we speak of  
a particle hopping across the Universe in an instant, because that 
would seem to correspond to something travelling faster than the 
speed of  light. Actually, the idea that a particle can be here and, an 
instant later, somewhere else very far away is not in itself  in contra-
diction with Einstein’s theories, because the real statement is that 
information cannot travel faster than the speed of  light, and it turns 
out that quantum theory remains constrained by that. As we shall 
learn, the dynamics corresponding to a particle leaping across the 
Universe are the very opposite of  information transfer, because we 
cannot know where the particle will leap to beforehand. It seems 
we are building a theory on complete anarchy, and you might nat-
urally be concerned that Nature surely cannot behave like this. But, 
as we shall see as the book unfolds, the order we see in the everyday 
world really does emerge out of  this fantastically absurd behaviour.

If  you are having trouble swallowing this anarchic proposal – that 
we have to fill the entire Universe with little clocks in order to 
describe the behaviour of  a single subatomic particle from one 
moment to the next – then you are in good company. Lifting the veil 
on quantum theory and attempting to interpret its inner workings 
is baffling to everyone. Niels Bohr famously wrote that ‘Those 
who are not shocked when they first come across quantum mechan-
ics cannot possibly have understood it’, and Richard Feynman 
introduced volume III of  The Feynman Lectures on Physics with the 
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words: ‘I think I can safely say that nobody understands quantum 
mechanics.’ Fortunately, following the rules is far simpler than 
 trying to visualize what they actually mean. The ability to follow 
through the consequences of  a particular set of  assumptions care-
fully, without getting too hung up on the philosophical implications, 
is one of  the most important skills a physicist learns. This is abso-
lutely in the spirit of  Heisenberg: let us set out our initial assumptions 
and compute their consequences. If  we arrive at a set of  predictions 
that agree with observations of  the world around us, then we 
should accept the theory as good.

Many problems are far too difficult to solve in a single mental 
leap, and deep understanding rarely emerges in ‘eureka’ moments. 
The trick is to make sure that you understand each little step and 
after a sufficient number of  steps the bigger picture should emerge. 
Either that or we realize we have been barking up the wrong tree 
and have to start over from scratch. The little steps we’ve outlined 
so far are not difficult in themselves, but the idea that we have 
decided to take a single clock and turn it into an infinity of  clocks is 
certainly a tricky concept, especially if  you try to imagine drawing 
them all. Eternity is a very long time, to paraphrase Woody Allen, 
especially near the end. Our advice is not to panic or give up and, in 
any case, the infinity bit is a detail. Our next task is to establish the 
rule that tells us what all those clocks should actually look like at 
some time after we laid down the particle.

The rule we are after is the essential rule of  quantum theory, 
although we will need to add a second rule when we come to con-
sider the possibility that the Universe contains more than just one 
particle. But first things first: for now, let’s focus on a single particle 
alone in the Universe – no one can accuse us of  rushing into things. 
At one instant in time, we’ll suppose we know exactly where it is, 
and it’s therefore represented by a single, solitary clock. Our specific 
task is to identify the rule that will tell us what each and every one 
of  the new clocks, scattered around the Universe, should look like 
at any time in the future.
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We’ll first state the rule without any justification. We will come 
back to discuss just why the rule looks like it does in a few para-
graphs, but for now we should treat it as one of  the rules in a game. 
Here’s the rule: at a time t in the future, a clock a distance x from 
the original clock has its hand wound in an anti-clockwise direction 
by an amount proportional to x2; the amount of  winding is also 
 proportional to the mass of  the particle m and inversely propor-
tional to the time t. In symbols, this means we are to wind the clock 
hand anti-clockwise by an amount proportional to mx2/t. In words, 
it means that there is more winding for a more massive particle, 
more winding the further away the clock is from the original, and 
less winding for a bigger step forward in time. This is an algorithm – 
a recipe if  you like – that tells us exactly what to do to work out 
what a given arrangement of  clocks will look like at some point in 
the future. At every point in the universe, we draw a new clock with 
its hand wound around by an amount given by our rule. This 
accounts for our assertion that the particle can, and indeed does, 
hop from its initial position to each and every other point in the 
 Universe, spawning new clocks in the process.

To simplify matters we have imagined just one initial clock, but 
of  course at some instant in time there might already be many 
clocks, representing the fact that the particle is not at some definite 
location. How are we to figure out what to do with a whole cluster 
of  clocks? The answer is that we are to do what we did for one 
clock, and repeat that for each and every one of  the clocks in the 
cluster. Figure 4.2 illustrates this idea. The initial set of  clocks are 
represented by the little circles, and the arrows indicate that the 
 particle hops from the site of  every initial clock to the point X, 
‘depositing’ a new clock in the process. Of  course, this delivers one 
new clock to X for every initial clock, and we must add all these 
clocks together in order to construct the final, definitive clock at X. 
The size of  this final clock’s hand gives us the chance of  finding the 
particle at X at the later time.

It is not so strange that we should be adding clocks together 
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when several arrive at the same point. Each clock corresponds to a 
different way that the particle could have reached X. This addition 
of  the clocks is understandable if  we think back to the double-slit 
experiment; we are simply trying to rephrase the wave description 
in terms of  clocks. We can imagine two initial clocks, one at each 
slit. Each of  these two clocks will deliver a clock to a particular point 
on the screen at some later time, and we must add these two clocks 
together in order to obtain the interference pattern.2 In summary 
therefore, the rule to calculate what the clock looks like at any point 
is to transport all the initial clocks to that point, one by one, and 
then add them together using the addition rule we encountered in 
the previous chapter.

Since we developed this language in order to describe the propa-

2. If  you are having trouble with that last sentence try replacing the word ‘clock’ 
with ‘wave’.

Figure 4.2. Clock hopping. The open circles indicate the locations of  the particle 
at some instant in time; we are to associate a clock with each point. To compute 
the probability to find the particle at X we are to allow the particle to hop there 
from all of  the original locations. A few such hops are indicated by the arrows. 
The shape of  the lines does not have any meaning and it certainly does not mean 
that the particle travels along some trajectory from the site of  a clock to X.

X
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gation of  waves, we can also think about more familiar waves in 
these terms. The whole idea, in fact, goes back a long way. Dutch 
physicist Christiaan Huygens famously described the propaga-
tion of  light waves like this as far back as 1690. He did not speak 
about imaginary clocks, but rather he emphasized that we should 
regard each point on a light wave as a source of  secondary waves 
( just as each clock spawns many secondary clocks). These second-
ary waves then combine to produce a new resultant wave. The 
process repeats itself  so that each point in the new wave also acts as 
a source of  further waves, which again combine, and in this way a 
wave advances.

We can now return to something that may quite legitimately 
have been bothering you. Why on earth did we choose the quantity 
mx2/t to determine the amount of  winding of  the clock hand? This 
quantity has a name: it is known as the action, and it has a long and 
venerable history in physics. Nobody really understands why Nature 
makes use of  it in such a fundamental way, which means that 
nobody can really explain why those clocks get wound round by the 
amount they do. Which somewhat begs the question: how did any-
one realize it was so important in the first place? The action was first 
introduced by the German philosopher and mathematician Gott-
fried Leibniz in an unpublished work written in 1669, although he 
did not find a way to use it to make calculations. It was reintroduced 
by the French scientist Pierre-Louis Moreau de Maupertuis in 1744, 
and subsequently used to formulate a new and powerful principle 
of  Nature by his friend, the mathematician Leonard Euler. Imagine 
a ball flying through the air. Euler found that the ball travels on a 
path such that the action computed between any two points on the 
path is always the smallest that it can be. For the case of  a ball, the 
action is related to the difference between the kinetic and potential 
energies of  the ball.3 This is known as ‘the principle of  least action’, 

3. The kinetic energy is equal to mv2/2 and the potential energy is mgh when the 
ball is a height h above the ground. g is the rate at which all objects accelerate in 
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and it can be used to provide an alternative to Newton’s laws of  
motion. At first sight it’s a rather odd principle, because in order to 
fly in a way that minimizes the action, the ball would seem to have 
to know where it is going before it gets there. How else could it fly 
through the air such that, when everything is done, the quantity 
called the action is minimized? Phrased in this way, the principle of  
least action sounds teleological – that is to say things appear to hap-
pen in order to achieve a pre-specified outcome. Teleological ideas 
generally have a rather bad reputation in science, and it’s easy to see 
why. In biology, a teleological explanation for the emergence of  
complex creatures would be tantamount to an argument for the 
existence of  a designer, whereas Darwin’s theory of  evolution by 
natural selection provides a simpler explanation that fits the avail-
able data beautifully. There is no teleological component to Darwin’s 
theory – random mutations produce variations in organisms, and 
external pressures from the environment and other living things 
determine which of  these variations are passed on to the next gen-
eration. This process alone can account for the complexity we see in 
life on Earth today. In other words, there is no need for a grand plan 
and no gradual assent of  life towards some sort of  perfection. 
Instead, the evolution of  life is a random walk, generated by the 
imperfect copying of  genes in a constantly shifting external environ-
ment. The Nobel-Prize-winning French biologist Jacques Monod 
went so far as to define a cornerstone of  modern biology as ‘the 
systematic or axiomatic denial that scientific knowledge can be 
obtained on the basis of  theories that involve, explicitly or not, a 
teleological principle’.

As far as physics is concerned, there is no debate as to whether or 
not the least action principle actually works, for it allows calcula-
tions to be performed that correctly describe Nature and it is a 
cornerstone of  physics. It can be argued that the least action prin-
ciple is not teleological at all, but the debate is in any case neutralized 

the vicinity of  the Earth. The action is their difference integrated between the 
times associated with the two points on the path.
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once we have a grasp of  Feynman’s approach to quantum mechan-
ics. The ball flying through the air ‘knows’ which path to choose 
because it actually, secretly, explores every possible path.

How was it discovered that the rule for winding the clocks should 
have anything to do with this quantity called the action? From a his-
torical perspective, Dirac was the first to search for a formulation of  
quantum theory that involved the action, but rather eccentrically he 
chose to publish his research in a Soviet journal, to show his support 
for Soviet science. The paper, entitled ‘The Lagrangian in Quantum 
Mechanics’, was published in 1933 and languished in obscurity for 
many years. In the spring of  1941, the young Richard Feynman had 
been thinking about how to develop a new approach to quantum 
theory using the Lagrangian formulation of  classical mechanics 
(which is the formulation derived from the principle of  least action). 
He met Herbert Jehle, a visiting physicist from Europe, at a beer 
party in Princeton one evening, and, as physicists tend to do when 
they’ve had a few drinks, they began discussing research ideas. Jehle 
remembered Dirac’s obscure paper, and the following day they 
found it in the Princeton Library. Feynman immediately started cal-
culating using Dirac’s formalism and, in the course of  an afternoon 
with Jehle looking on, he found that he could derive the Schrödinger 
equation from an action principle. This was a major step forward, 
although Feynman initially assumed that Dirac must have done the 
same because it was such an easy thing to do; easy, that is, if  you are 
Richard Feynman. Feynman eventually asked Dirac whether he’d 
known that, with a few additional mathematical steps, his 1933 paper 
could be used in this way. Feynman later recalled that Dirac, lying 
on the grass in Princeton after giving a rather lacklustre lecture, 
simply replied, ‘No, I didn’t know. That’s interesting.’ Dirac was one 
of  the greatest physicists of  all time, but a man of  few words. 
Eugene Wigner, himself  one of  the greats, commented that ‘Feyn-
man is a second Dirac, only this time human.’

To recap: we have stated a rule that allows us to write down the 
whole array of  clocks representing the state of  a particle at some 
instant in time. It’s a bit of  a strange rule – fill the Universe with an 



54

The Quantum Universe

infinite number of  clocks, all turned relative to each other by an 
amount that depends on a rather odd but historically important 
quantity called the action. If  two or more clocks land at the same 
point, add them up. The rule is built on the premise that we must 
allow a particle the freedom to jump from any particular place in 
the Universe to absolutely anywhere else in an infinitesimally small 
moment. We said at the outset that these outlandish ideas must 
ultimately be tested against Nature to see whether anything sens-
ible emerges. To make a start on that, let’s see how something very 
concrete, one of  the cornerstones of  quantum theory, emerges from 
this apparent anarchy: Heisenberg’s Uncertainty Principle.

Heisenberg’s Uncertainty Principle

Heisenberg’s Uncertainty Principle is one of  the most misunder-
stood parts of  quantum theory, a doorway through which all sorts 
of  charlatans and purveyors of  tripe4 can force their philosophical 
musings. He presented it in 1927 in a paper entitled ‘Über den anschau-
lichen Inhalt der quantentheoretischen Kinematik und Mechanik’, 
which is very difficult to translate into English. The difficult word is 
anschaulich, which means something like ‘physical’ or ‘intuitive’. 
Heisenberg seems to have been motivated by his intense annoyance 
that Schrödinger’s more intuitive version of  quantum theory was 
more widely accepted than his own, even though both formalisms 
led to the same results. In the spring of  1926, Schrödinger was con-
vinced that his equation for the wavefunction provided a physical 
picture of  what was going on inside atoms. He thought that his 
wavefunction was a thing you could visualize, and was related to 
the distribution of  electric charge inside the atom. This turned out 
to be incorrect, but at least it made physicists feel good during the 

4. Wikipedia describes ‘tripe’ as ‘a type of  edible offal from the stomachs of  vari-
ous farm animals’, but it is colloquially used to mean ‘nonsense’. Either definition 
is appropriate here.
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first six months of  1926: until Born introduced his probabilistic in -
terpretation.

Heisenberg, on the other hand, had built his theory around 
abstract mathematics, which predicted the outcomes of  experiments 
extremely successfully but was not amenable to a clear physical inter-
pretation. Heisenberg expressed his irritation to Pauli in a letter on 
8 June 1926, just weeks before Born threw his metaphorical spanner 
into Schrödinger’s intuitive approach. ‘The more I think about the 
physical part of  Schrödinger’s theory, the more disgusting I find it. 
What Schrödinger writes about the Anschaulichkeit of  his theory . . . 
I consider Mist.’ The translation of  the German word mist is ‘rubbish’ 
or ‘bullshit’ . . . or ‘tripe’.

What Heisenberg decided to do was to explore what an ‘intuitive 
picture’, or Anschaulichkeit, of  a physical theory should mean. 
What, he asked himself, does quantum theory have to say about the 
familiar properties of  particles such as position? In the spirit of  his 
original theory, he proposed that a particle’s position is a meaning-
ful thing to talk about only if  you also specify how you measure it. 
So you can’t ask where an electron actually is inside a hydrogen 
atom without describing exactly how you’d go about finding out 
that information. This might sound like semantics, but it most def-
initely is not. Heisenberg appreciated that the very act of  measuring 
something introduces a disturbance, and that as a result there is a 
limit on how well we can ‘know’ an electron. Specifically, in his ori-
ginal paper, Heisenberg was able to estimate what the relationship 
is between how accurately we can simultaneously measure the pos-
ition and the momentum of  a particle. In his famous Uncertainty 
Principle, he stated that if  ∆x is the uncertainty in our knowledge 
of  the position of  a particle (the Greek letter ∆ is pronounced 
‘delta’, so ∆x is pronounced ‘delta x’) and ∆p is the corresponding 
uncertainty in the momentum, then

∆x∆p ∼ h

where h is Planck’s constant and the ‘∼’ symbol means ‘is similar in 
size to’. In words, the product of  the uncertainty in the position of  
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a particle and the uncertainty in its momentum will be roughly 
equal to Planck’s constant. This means that the more accurately we 
identify the location of  a particle, the less well we can know its 
momentum, and vice versa. Heisenberg came to this conclusion by 
contemplating the scattering of  photons off  electrons. The photons 
are the means by which we ‘see’ the electron, just as we see every-
day objects by scattering photons off  them and collecting them in 
our eyes. Ordinarily, the light that bounces off  an object disturbs the 
object imperceptibly, but that is not to deny our fundamental inabil-
ity to absolutely isolate the act of  measurement from the thing one 
is measuring. One might worry that it could be possible to beat the 
limitations of  the Uncertainty Principle by devising a suitably 
ingenious experiment. We are about to show that this is not the case 
and the Uncertainty Principle is absolutely fundamental, because 
we are going to derive it using only our theory of  clocks.

Deriving Heisenberg’s Uncertainty Principle  
from the Theory of  Clocks

Rather than starting with a particle at a single point, let us instead 
think about a situation where we know roughly where the particle 
is, but we don’t know exactly where it is. If  we know that a particle 
is somewhere in a small region of  space then we should represent it 
by a cluster of  clocks filling that region. At each point within the 
region there will be a clock, and that clock will represent the prob-
ability that the particle will be found at that point. If  we square up 
the lengths of  all the clock hands at every point and add them 
together, we will get 1, i.e. the probability to find the particle some-
where in the region is 100 per cent.

In a moment we are going to use our quantum rules to perform 
a serious calculation, but first we should come clean and say that 
we  have failed to mention an important addendum to the clock-
winding rule. We didn’t want to introduce it earlier because it is 
a  technical detail, but we won’t get the correct answers when it 
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comes to calculating actual probabilities if  we ignore it. It relates to 
what we said at the end of  the previous paragraph.

If  we begin with a single clock, then the hand must be of  length 1, 
because the particle must be found at the location of  the clock with 
a probability of  100 per cent. Our quantum rule then says that, in 
order to describe the particle at some later time, we should trans-
port this clock to all points in the Universe, corresponding to the 
particle leaping from its initial location. Clearly we cannot leave all 
of  the clock hands with a length of  1, because then our probability 
interpretation falls down. Imagine, for example, that the particle is 
described by four clocks, corresponding to its being at four different 
locations. If  each one has a size of  1 then the probability that the 
particle is located at any one of  the four positions would be 400 per 
cent and this is obviously nonsense. To fix this problem we must 
shrink the clocks in addition to winding them anti-clockwise. This 
‘shrink rule’ states that after all of  the new clocks have been spawned, 
every clock should be shrunk by the square root of  the total num-
ber of  clocks.5 For four clocks, that would mean that each hand 
must be shrunk by 

√
4, which means that each of  the four final 

clocks will have a hand of  length 1/2. There is then a (1/2)
2 = 25 per 

cent chance that the particle will be found at the site of  any one of  
the four clocks. In this simple way we can ensure that the probability 
that the particle is found somewhere will always total 100 per cent. 
Of  course, there may be an infinite number of  possible locations, in 
which case the clocks would have zero size, which may sound alarm-
ing, but the maths can handle it. For our purposes, we shall always 
imagine that there are a finite number of  clocks, and in any case we 
will never actually need to know how much a clock shrinks.

Let’s get back to thinking about a Universe containing a single 
particle whose location is not precisely known. You can treat the 

5. Shrinking all clocks by the same amount is strictly only true provided that we 
are ignoring the effects of  Einstein’s Special Theory of  Relativity. Otherwise, 
some of  the clocks get shrunk more than others. We shan’t need to worry about 
this.
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next section as a little mathematical puzzle – it may be tricky to fol-
low the first time through, and it may be worth rereading, but if  
you are able to follow what is going on then you’ll understand how 
the Uncertainty Principle emerges. For simplicity, we’ve assumed 
that the particle moves in one dimension, which means it is located 
somewhere on a line. The more realistic three-dimensional case is 
not fundamentally different – it’s just harder to draw. In Figure 4.3 
we’ve sketched this situation, representing the particle by a line of  
three clocks. We should imagine that there are many more than 
this – one at every possible point that the particle could be – but this 
would be very hard to draw. Clock 3 sits at the left side of  the initial 
clock cluster and clock 1 is at the right side. To reiterate, this repre-
sents a situation in which we know that the particle starts out 
somewhere between clocks 1 and 3. Newton would say that the par-
ticle stays between clocks 1 and 3 if  we do nothing to it, but what 
does the quantum rule say? This is where the fun starts – we are 
going to play with the clock rules to answer this question.

Let’s allow time to tick forward and work out what happens to 
this line of  clocks. We’ll start off  by thinking about one particular 
point a large distance away from the initial cluster, marked X in the 
figure. We’ll be more quantitative about what a ‘large distance’ 
means later on, but for now it simply means that we need to do a lot 
of  clock winding.

Applying the rules of  the game, we should take each clock in the 

X

10

123

negligibly 
small clock

23

0.1 0.1

1

Figure 4.3. A line of  three clocks all reading the same time: this describes a particle 
initially located in the region of  the clocks. We are interested in figuring out what 
the chances are of  finding the particle at the point X at some later time.
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initial cluster and transport it to point X, winding the hand around 
and shrinking it accordingly. Physically, this corresponds to the par-
ticle hopping from that point in the cluster to point X. There will be 
many clocks arriving at X, one from each initial clock in the line, 
and we should add them all up. When all this is done, the square of  
the length of  the resulting clock hand at X will give the probability 
that we will find the particle at X.

Now let’s see how this all pans out and put some numbers in. 
Let’s say that the point X is a distance of  ‘10 units’ away from clock 1, 
and that the initial cluster is ‘0.2 units’ wide. Answering the obvious 
question: ‘How far is 10 units?’ is where Planck’s constant enters our 
story, but for now we shall deftly side-step that issue and simply spe-
cify that 1 unit of  distance corresponds to 1 complete (twelve-hour) 
wind of  the clock. This means that the point X is approximately 
102 = 100 complete windings away from the initial cluster (remem-
ber the winding rule). We shall also assume that the clocks in the 
initial cluster started out of  equal size, and that they all point to 
12 o’clock. Assuming they are of  equal size is simply the assumption 
that the particle is equally likely to be anywhere in between points 1 
and 3 in the figure and the significance of  them all reading the same 
time will emerge in due course.

To transport a clock from point 1 to point X, we have to rotate the 
clock hand anti-clockwise 100 complete times, as per our rule. Now 
let’s move across to point 3, which is a further 0.2 units away, and 
transport that clock to X. This clock has to travel 10.22 units, so we 
have to wind its hand back a little more than before, i.e. by 10.22, 
which is very close to 104, complete winds.

We now have two clocks landing at X, corresponding to the par-
ticle hopping from 1 to X and from 3 to X, and we must add them 
together in order to start the task of  computing the final clock. 
Because they both got wound around by very close to a whole num-
ber of  winds, they will both end up pointing roughly to 12 o’clock, 
and they will add up to form a clock with a bigger hand also point-
ing to 12 o’clock. Notice that it is only the final direction of  the clock 
hands that matters. We do not need to keep track of  how often they 
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wind around. So far so good, but we haven’t finished because there 
are many other little clocks in between the right- and left-hand edges 
of  the cluster.

And so our attention now turns to the clock midway between the 
two edges, i.e. at point 2. That clock is 10.12 units away from X, which 
means that we have to wind it 10.12 times. This is very close to 
102 complete rotations – again a whole number of  winds. We need 
to add this clock to the others at X and, as before, this will make the 
hand at X even longer. Continuing, there is also a point midway 
between points 1 and 2 and the clock hopping from there will get 
 101 complete rotations, which will add to the size of  the final hand 
again. But here is the important point. If  we now go midway again 
between these two points, we get to a clock that will be wound 
100.5 rotations when it reaches X. This corresponds to a clock with 
a hand pointing to 6 o’clock, and when we add this clock we will 
reduce the length of  the clock hand at X. A little thought should con-
vince you that, although the points labelled 1, 2 and 3 each produce 
clocks at X reading 12 o’clock, and although the points midway 
between 1, 2 and 3 also produce clocks that read 12 o’clock, the points 
that are 1/4 and 3/4 of  the way between points 1 and 3 and points 2 and 
3 each generate clocks that point to 6 o’clock. In total that is five 
clocks pointing up and four clocks pointing down. When we add all 
these clocks together, we’ll get a resultant clock at X that has a tiny 
hand because nearly all of  the clocks will cancel each other out.

This ‘cancellation of  clocks’ obviously extends to the realistic 
case where we consider every possible point lying in the region 
between points 1 and 3. For example, the point that lies 1/8 of  the 
way along from point 1 contributes a clock reading 9 o’clock, whilst 
the point lying 3/8 of  the way reads 3 o’clock – again the two  cancel 
each other out. The net effect is that the clocks corresponding to all 
of  the ways that the particle could have travelled from somewhere 
in the cluster to point X cancel each other out. This  cancellation is 
illustrated on the far right of  the figure. The arrows indicate the 
clock hands arriving at X from various points in the  initial cluster. 
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The net effect of  adding all these arrows together is that they all 
cancel each other out. This is the crucial ‘take home’ message.

To reiterate, we have just shown that, provided the original cluster 
of  clocks is large enough and that point X is far enough away, then for 
every clock that arrives at X pointing to 12 o’clock, there will be 
another that arrives pointing to 6 o’clock to cancel it out. For every 
clock that arrives pointing to 3 o’clock, there will be another that 
arrives pointing to 9 o’clock to cancel it out, and so on. This wholesale 
cancellation means that there is effectively no chance at all of  finding 
the particle at X. This really is very encouraging and interesting, 
because it looks rather like a description of  a particle that isn’t moving. 
Although we started out with the ridiculous-sounding proposal that a 
particle can go from being at a single point in space to anywhere else 
in the Universe a short time later, we have now discovered that this 
is not the case if  we start out with a cluster of  clocks. For a cluster, 
because of  the way all the clocks interfere with each other, the particle 
has effectively no chance of  being far away from its initial position. 
This conclusion has come about as a result of  an ‘orgy of  quantum 
interference’, in the words of  Oxford professor James Binney.

For the orgy of  quantum interference and corresponding cancel-
lation of  clocks to happen, point X needs to be far enough away 
from the initial cluster so that the clocks can rotate around many 
times. Why? Because if  point X is too close then the clock hands 
won’t necessarily have the chance to go around at least once, which 
means they will not cancel each other out so effectively. Imagine, for 
example, that the distance from the clock at point 1 to point X is 
0.3 instead of  10. Now the clock at the front of  the cluster gets a 
smaller wind than before, corresponding to 0.32 = 0.09 of  a turn, 
which means it is pointing just past 1 o’clock. Likewise, the clock 
from point 3, at the back of  the cluster, now gets wound by 
0.52 = 0.25 of  a turn, which means it reads 3 o’clock. Consequently, 
all of  the clocks arriving at X point somewhere between 1 o’clock 
and 3 o’clock, which means they do not cancel each other out but 
instead add up to one big clock pointing to approximately 2 o’clock. 
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All of  this amounts to saying that there will be a reasonable chance 
of  finding the particle at points close to, but outside of, the original 
cluster. By ‘close to’, we mean that there isn’t sufficient winding to 
get the clock hands around at least once. This is starting to have a 
whiff  of  the Uncertainty Principle about it, but it is still a little 
vague, so let’s explore exactly what we mean by a ‘large enough’ 
initial cluster and a point ‘far enough away’.

Our initial ansatz, following Dirac and Feynman, was that the 
amount the hands wind around when a particle of  mass m hops a 
distance x in a time t is proportional to the action, i.e. the amount 
of  winding is proportional to mx2/t. Saying it is ‘proportional to’ 
isn’t good enough if  we want to calculate real numbers. We need to 
know precisely what the amount of  winding is equal to. In Chapter 2 
we discussed Newton’s law of  gravitation, and in order to make 
quantitative predictions we introduced Newton’s gravitational con-
stant, which determines the strength of  the gravitational force. 
With the addition of  Newton’s constant, numbers can be put into 
the equation and real things can be calculated, such as the orbital 
period of  the Moon or the path taken by the Voyager 2 spacecraft 
on its journey across the solar system. We now need something 
similar for quantum mechanics – a constant of  Nature that ‘sets the 
scale’ and allows us to take the action and produce a precise state-
ment about the amount by which we should wind clocks as we 
move them a specified distance away from their initial position in a 
particular time. That constant is Planck’s constant.

A Brief  History of  Planck’s Constant

In a flight of  imaginative genius during the evening of  7 October 
1900, Max Planck managed to explain the way that hot objects radi-
ate energy. Throughout the second half  of  the nineteenth century, 
the exact relationship between the distribution of  the wavelengths 
of  light emitted by hot objects and their temperature was one of  
the great puzzles in physics. Every hot object emits light and, as the 
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temperature is increased, the character of  the light changes. We are 
familiar with light in the visible region, corresponding to the col-
ours of  the rainbow, but light can also occur with wavelengths that 
are either too long or too short to be seen by the human eye. Light 
with a longer wavelength than red light is called ‘infra-red’ and 
it can be seen using night-vision goggles. Still longer wavelengths 
correspond to radio waves. Likewise, light with a wavelength just 
shorter than blue is called ultra-violet, and the shortest wavelength 
light is generically referred to as ‘gamma radiation’. An unlit lump 
of  coal at room temperature will emit light in the infra-red part 
of the spectrum. But if  we throw it on to a burning fire, it will begin 
to glow red. This is because, as the temperature of  the coal rises, 
the average wavelength of  the radiation it emits decreases, eventu-
ally entering the range that our eyes can see. The rule is that the 
hotter the object, the shorter the wavelength of  the light it emits. As 
the precision of  the experimental measurements improved in the 
nineteenth century, it became clear that nobody had the correct 
mathematical formula to describe this observation. This problem is 
often termed the ‘black body problem’, because physicists refer to 
idealized objects that perfectly absorb and then re-emit radiation as 
‘black bodies’. The problem was a serious one, because it revealed 
an inability to understand the character of  light emitted by any-
thing and everything.

Planck had been thinking hard about this and related matters in 
the fields of  thermodynamics and electromagnetism for many years 
before he was appointed Professor of  Theoretical Physics in Berlin. 
The post had been offered to both Boltzmann and Hertz before 
Planck was approached, but both declined. This proved to be fortuit-
ous, because Berlin was the centre of  the experimental investigations 
into black body radiation, and Planck’s immersion at the heart of  the 
experimental work proved key to his subsequent theoretical tour de 
force. Physicists often work best when they are able to have wide-
ranging and unplanned conversations with colleagues.

We know the date and time of  Planck’s revelation so well because 
he and his family had spent the afternoon of  Sunday 7 October 1900 
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with his colleague Heinrich Rubens. Over lunch, they discussed the 
failure of  the theoretical models of  the day to explain the details of  
black body radiation. By the evening, Planck had scribbled a for-
mula on to a postcard and sent it to Rubens. It turned out to be the 
correct formula, but it was very strange indeed. Planck later 
described it as ‘an act of  desperation’, having tried everything else 
he could think of. It is genuinely unclear how Planck came up with 
his formula. In his superb biography of  Albert Einstein, Subtle is the 
Lord …, Abraham Pais writes: ‘His reasoning was mad, but his mad-
ness has that divine quality that only the greatest transitional figures 
can bring to science.’ Planck’s proposal was both inexplicable and 
revolutionary. He found that he could explain the black body spec-
trum, but only if  he assumed that the energy of  the emitted light 
was made up of  a large number of  smaller ‘packets’ of  energy. In 
other words the total energy is quantized in units of  a new funda-
mental constant of  Nature, which Planck called ‘the quantum of  
action’. Today, we call it Planck’s constant.

What Planck’s formula actually implies, although he didn’t 
appreciate it at the time, is that light is always emitted and absorbed 
in packets, or quanta. In modern notation, those packets have 
energy E = hc/λ, where λ is the wavelength of  the light (pro-
nounced ‘lambda’), c is the speed of  light and h is Planck’s constant. 
The role of  Planck’s constant in this equation is as the conversion 
factor between the wavelength of  light and the energy of  its associ-
ated quantum. The realization that the quantization of  the energy 
of  emitted light, as identified by Planck, arises because the light 
itself  is made up of  particles was proposed, tentatively at first, by 
Albert Einstein. He made the proposition during his great burst 
of creativity in 1905 – the annus mirabilis which also produced the 
Special Theory of  Relativity and the most famous equation in scien-
tific history, E = mc2. Einstein received the 1921 Nobel Prize for 
physics (which due to a rather arcane piece of  Nobelian bureaucracy 
he received in 1922) for this work on the photoelectric effect, and not 
for his better-known theories of  relativity. Einstein proposed that light 
can be regarded as a stream of  particles (he did not at that time use the 
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word ‘photons’) and he correctly recognized that the energy of  each 
photon is inversely proportional to its wavelength. This conjecture 
by Einstein is the origin of  one of  the most famous paradoxes in 
quantum theory – that particles behave as waves, and vice versa.

Planck removed the first bricks from the foundations of  Maxwell’s 
picture of  light by showing that the energy of  the light emitted from 
a hot object can only be described if  it is emitted in quanta. It was 
Einstein who pulled out the bricks that brought down the whole edi-
fice of  classical physics. His interpretation of  the photoelectric effect 
demanded not only that light is emitted in little packets, but that it 
also interacts with matter in the form of  localized packets. In other 
words, light really does behave as a stream of  particles.

The idea that light is made from particles – that is to say that ‘the 
electromagnetic field is quantized’ – was deeply controversial and 
not accepted for decades after Einstein first proposed it. The reluc-
tance of  Einstein’s peers to embrace the idea of  the photon can be 
seen in the proposal, co-written by Planck himself, for Einstein’s 
membership of  the prestigious Prussian Academy in 1913, a full 
eight years after Einstein’s introduction of  the photon:

In sum, one can say that there is hardly one among the great prob-
lems in which modern physics is so rich to which Einstein has not 
made a remarkable contribution. That he may sometimes have 
missed the target in his speculations, as, for example, in his hypoth-
esis of  light quanta, cannot really be held too much against him, for 
it is not possible to introduce really new ideas even in the most exact 
sciences without sometimes taking a risk.

In other words, nobody really believed that photons were real. 
The widely held belief  was that Planck was on safe ground because 
his proposal was more to do with the properties of  matter – the 
little oscillators that emitted the light – rather than the light itself. It 
was simply too strange to believe that Maxwell’s beautiful wave 
equations needed replacing with a theory of  particles.

We mention this history partly to reassure you of  the genuine 
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difficulties that must be faced in accepting quantum theory. It is 
impossible to visualize a thing, such as an electron or a photon, that 
behaves a little bit like a particle, a little bit like a wave, and a little 
bit like neither. Einstein remained concerned about these issues for 
the rest of  his life. In 1951, just four years before his death, he wrote: 
‘All these fifty years of  pondering have not brought me any closer to 
answering the question, what are light quanta?’

Sixty years later, what is unarguable is that the theory we are in 
the process of  developing using our arrays of  little clocks describes, 
with unerring precision, the results of  every experiment that has 
ever been devised to test it.

Back to Heisenberg’s Uncertainty Principle

This, then, is the history behind the introduction of  Planck’s con-
stant. But for our purposes, the most important thing to notice is that 
Planck’s constant is a unit of  ‘action’, which is to say that it is the same 
type of  quantity as the thing which tells us how far to wind the clocks. 
Its modern value is 6.6260695729 × 10−34 kg m2/s, which is very tiny 
by everyday standards. This will turn out to be the reason why we 
don’t notice its all-pervasive effects in everyday life.

Recall that we wrote of  the action corresponding to a particle hop-
ping from one place to another as the mass of  the particle multiplied 
by the distance of  the hop squared divided by the time interval over 
which the hop occurs. This is measured in kg m2/s, as is Planck’s 
constant, and so if  we simply divide the action by Planck’s constant, 
we’ll cancel all the units out and end up with a pure number. Accord-
ing to Feynman, this pure number is the amount we should wind 
the clock associated with a particle hopping from one place to 
another. For example, if  the number is 1, that means 1 full wind and 
if  it’s 1/2, it means 1/2 a wind, and so on. In symbols, the precise 
amount by which we should turn the clock hand to account for the 
possibility that a particle hops a distance x in a time t is mx2/(2ht). 
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Notice that a factor 1/2 has appeared in the formula. You can either 
take that as being what is needed to agree with experiment or you 
can note that this arises from the definition of  the action.6 Either is 
fine. Now that we know the value of  Planck’s constant, we can 
really quantify the amount of  winding and address the point we 
deferred a little earlier. Namely, what does jumping a distance of  ‘10’ 
actually mean?

Let’s see what our theory has to say about something small 
by  everyday standards: a grain of  sand. The theory of  quantum 
mechanics we’ve developed suggests that if  we place the grain down 
somewhere then at a later time it could be anywhere in the Universe. 
But this is obviously not what happens to real grains of  sand. We 
have already glimpsed a way out of  this potential problem because 
if  there is sufficient interference between the clocks, corresponding 
to the sand grain hopping from a variety of  initial locations, then 
they will all cancel out to leave the grain sitting still. The first ques-
tion we need to answer is: how many times will the clocks get 
wound if  we transport a particle with the mass of  a grain of  sand a 
distance of, say, 0.001 millimetres, in a time of  one second? We 
wouldn’t be able to see such a tiny distance with our eyes, but it is 
still quite large on the scale of  atoms. You can do the calculation 
quite easily yourself  by substituting the numbers into Feynman’s 
winding rule.7 The answer is something like a hundred million 
years’ worth of  clock winding. Imagine how much interference that 

6. For a particle of  mass m that hops a distance x in a time t, the action is 
½ m(x/t)2t if  the particle travels in a straight line at constant speed. But this does 
not mean the quantum particle travels from place to place in straight lines. The 
clock-winding rule is obtained by associating a clock with each possible path the 
particle can take between two points and it is an accident that, after summing 
over all these paths, the result is equal to this simple result. For example, the 
clock-winding rule is not this simple if  we include corrections to ensure consist-
ency with Einstein’s Theory of  Special Relativity.
7. A sand grain typically has a mass around 1 microgram, which is a millionth of  
a kilogram.
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allows for. The upshot is that the sand grain stays where it is and 
there is almost no probability that it will jump a discernible dis-
tance, even though we really have to consider the possibility that it 
secretly hopped everywhere in the Universe in order to reach that 
conclusion.

This is a very important result. If  you had put the numbers in 
for yourself  then you’d already have a feel for why this is the case; 
it’s the smallness of  Planck’s constant. Written out in full, it has a 
value 0.0000000000000000000000000000000066260695729 kg m2/s0.0000000000000000000000000000000066260695729 kg m2/s. 
Dividing pretty much any everyday number by that will result in a 
lot of  clock winding and a lot of  interference, with the result that 
the exotic journeys of  our sand grain across the Universe all cancel 
each other out, and we perceive this voyager through infinite space 
as a boring little speck of  dust sitting motionless on a beach.

Our particular interest of  course is in those circumstances where 
clocks do not cancel each other out, and, as we have seen, this 
occurs if  the clocks do not turn by more than a single wind. In that 
case, the orgy of  interference will not happen. Let’s see what this 
means quantitatively.

We are going to return to the clock cluster, which we’ve redrawn 
in Figure 4.4, but we’ll be more abstract in our analysis this time 
instead of  committing to definite numbers. We will suppose that the 
cluster has a size equal to ∆x, and the distance of  the closest point in 
the cluster to point X is x. In this case, the cluster size ∆x refers to the 
uncertainty in our knowledge of  the initial position of  the particle; it 
started out somewhere in a region of  size ∆x. Starting with point 1, 

Figure 4.4. The same as Figure 4.3 except that we are now not committing to a 
 specific value of  the size of  the clock cluster or the distance to the point X.

X

∆
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the point in the cluster closest to point X, we should wind the clock 
corresponding to a hop from this point to X by an amount

W1 =
mx2

2ht

Now let’s go to the farthest point, point 3. When we transport the 
clock from this point to X, it will be wound around by a greater 
amount, i.e.

W3 =
m(x + ∆x)2

2ht

We can now be precise and state the condition for the clocks propa-
gated from all points in the cluster not to cancel out at X: there 
should be less than one full wind of  difference between the clocks 
from points 1 and 3, i.e.

W3 − W1 < one wind

Writing this out in full, we have

m(x + ∆x)2

2ht
− mx2

2ht
< 1

We’re now going to consider the specific case for which the cluster 
size, ∆x, is much smaller than the distance x. This means we are 
asking for the prospects that our particle will make a leap far out-
side of  its initial domain. In this case, the condition for no clock 
cancellation, derived directly from the previous equation, is

mx∆x

ht
< 1

If  you know a little maths, you’ll be able to get this by multiplying 
out the bracketed term and neglecting all the terms that involve 
(∆x)2. This is a valid thing to do because we’ve said that ∆x is very 
small compared to x, and a small quantity squared is a very small 
quantity.

This equation is the condition for there to be no cancellation 
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of the clocks at point X. We know that if  the clocks don’t cancel out at 
a particular point, then there is a good chance that we will find the par-
ticle there. So we have discovered that if  the particle is initially located 
within a cluster of  size ∆x, then at a time t later there is a good chance 
to find it a long distance x away from the cluster if  the above equation 
is satisfied. Furthermore, this distance increases with time, because we 
are dividing by the time t in our formula. In other words, as more time 
passes, the chances of  finding the particle further away from its initial 
position increases. This is beginning to look suspiciously like a particle 
that is moving. Notice also that the chance of  finding the particle a 
long way away also increases as ∆x gets smaller – i.e. as the uncer-
tainty in the initial position of  the particle gets smaller. In other words, 
the more accurately we pin down the particle, the faster it moves away 
from its initial position. This now looks a lot like Heisenberg’s Un-
certainty Principle.

To make final contact, let us rearrange the equation a little bit. 
Notice that for a particle to make its way from anywhere in the cluster 
to point X in time t, it must leap a distance x. If  you actually measured 
the particle at X then you would naturally conclude that the particle 
had travelled at a speed equal to x/t. Also, remember that the mass 
multiplied by the speed of  a particle is its momentum, so the quantity 
mx/t is the measured momentum of  the particle. We can now go 
ahead and simplify our equation some more, and write

p∆x

h
< 1

where p is the momentum. This equation can be rearranged to read

p∆x < h

and this really is important enough to merit more discussion, 
because it looks very much like Heisenberg’s Uncertainty Principle.

This is the end of  the maths for the time being, and if  you haven’t 
followed it too carefully you should be able to pick the thread up 
from here.

If  we start out with a particle localized within a blob of  size ∆x, 
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we have just discovered that, after some time has passed, it could be 
found anywhere in a larger blob of  size x. The situation is illustrated 
in Figure 4.5. To be precise, this means that if  we had looked for the 
particle initially, then the chances are that we would have found it 
somewhere inside the inner blob. If  we didn’t measure it but instead 
waited a while, then there would be a good chance of  finding it later 
on anywhere within the larger blob. This means that the particle 
could have moved from a position within the small initial blob to a 
position within the larger one. It doesn’t have to have moved, and 
there is still a probability that it will be within the smaller region ∆x. 
But it is quite possible that a measurement will reveal that the par-
ticle has moved as far out as the edge of  the bigger blob.8 If  this 
extreme case were realized in a measurement then we would conclude 
that the particle is moving with a momentum given by the equation 
we just derived (and if  you have not followed the maths then you 
will just have to take this on trust), i.e. p = h/∆x.

8. There is a chance that the particle travels even farther than the ‘extreme’ case 
marked out by the large blob in the figure but, as we have shown, the clocks tend 
to cancel out for such scenarios.

∆

Figure 4.5. A small cluster grows with time, corresponding to a particle that is 
initially localized becoming delocalized as time advances.
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Now, we could start from the beginning again and set everything 
up exactly as before, so that the particle is once again initially located 
in the smaller blob of  size ∆x. Upon measuring the particle, we 
would probably find it somewhere else inside the larger blob, other 
than the extreme edge, and would therefore conclude that its 
momentum is smaller than the extreme value.

If  we imagine repeating this experiment again and again, meas-
uring the momentum of  a particle that starts out inside a small 
cluster of  size ∆x, then we will typically measure a range of  values 
of  p anywhere between zero and the extreme value h/∆x. Saying 
that ‘if  you do this experiment many times then I predict you will 
measure the momentum to be somewhere between zero and h/∆x’ 
means that ‘the momentum of  the particle is uncertain by an 
amount h/∆x’. Just as for the case of  the uncertainty in position, 
physicists assign the symbol ∆p to this uncertainty, and write 
∆p∆x ∼ h. The ‘∼’ sign indicates that the product of  the uncertain-
ties in position and momentum is roughly equal to Planck’s 
constant – it might be a little bigger or it might be a little smaller. 
With a little more care in the mathematics we could get this equa-
tion exactly right. The result would depend upon the details of  the 
initial clock cluster, but it is not worth the extra effort to spend time 
doing that because what we have done is sufficient to capture the 
key ideas.

The statement that the uncertainty in a particle’s position multi-
plied by the uncertainty in its momentum is (approximately) equal 
to Planck’s constant is perhaps the most familiar form of  Heisen-
berg’s Uncertainty Principle. It is telling us that, starting from the 
knowledge that the particle is located within some region at some 
initial time, a measurement of  the particle’s position at some time 
later will reveal that the particle is moving with a momentum whose 
value cannot be predicted more accurately than ‘somewhere 
between zero and h/∆x’. In other words, if  we start out by confin-
ing a particle to be in a smaller and smaller region, then it has a 
tendency to want to jump further and further away from that 
region. This is so important, it is worth restating a third time: the 
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more precisely you know the position of  a particle at some instant, 
the less well you know how fast it is moving and therefore where it 
will be sometime later.

This is exactly Heisenberg’s statement of  the Uncertainty Prin-
ciple. It lies at the heart of  quantum theory, but we should be quite 
clear that it is not in itself  a vague statement. It is a statement about 
our inability to track particles around with precision, and there is no 
more scope for quantum magic here than there is for Newtonian 
magic. What we have done in the last few pages is to derive Heisen-
berg’s Uncertainty Principle from the fundamental rules of  quantum 
physics as embodied in the rules for winding, shrinking and adding 
clocks. Indeed, its origin lies in our proposition that a particle can be 
anywhere in the Universe an instant after we measure its position. 
Our initial wild proposal that the particle can be anywhere and 
everywhere in the Universe has been tamed by the orgy of  quan-
tum interference, and the Uncertainty Principle is in a sense all that 
remains of  the original anarchy.

There is something very important that we should say about how 
to interpret the Uncertainty Principle before we move on. We must 
not make the mistake of  thinking that the particle is actually at 
some single specific place and that the spread in initial clocks really 
reflects some limitation in our understanding. If  we thought that 
then we would not have been able to compute the Uncertainty Prin-
ciple correctly, because we would not admit that we must take 
clocks from every possible point inside the initial cluster, transport 
them in turn to a distant point X and then add them all up. It was the 
act of  doing this that gave us our result, i.e. we had to suppose that 
the particle arrives at X via a superposition of  many possible routes. 
We will make use of  Heisenberg’s principle in some real-world 
examples later on. For now, it is satisfying that we have derived one 
of  the key results of  quantum theory using nothing more than 
some simple manipulations with imaginary clocks.

Let’s stick a few numbers into the equations to get a better feel 
for things. How long will we have to wait for there to be a reason-
able probability that a sand grain will hop outside a matchbox? Let’s 
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assume that the matchbox has sides of  length 3 cm and that the sand 
grain weighs 1 microgram. Recall that the condition for there to be 
a reasonable probability of  the sand grain hopping a given distance 
is given by

mx∆x

ht
< 1

where ∆x is the size of  the matchbox. Let’s calculate what t should 
be if  we want the sand grain to jump a distance x = 4 cm cm, which 
would comfortably exceed the size of  the matchbox. Doing a very 
simple bit of  algebra, we find that

t >
mx∆x

h

and sticking the numbers in tells us that t must be greater than 
approximately 1021 seconds. That is around 6 × 10281013 years, which is 
over a thousand times the current age of  the Universe. So it won’t 
happen. Quantum mechanics is weird, but not weird enough to 
allow a grain of  sand to hop unaided out of  a matchbox.

To conclude this chapter, and launch ourselves into the next one, 
we will make one final observation. Our derivation of  the Uncer-
tainty Principle was based upon the configuration of  clocks illustrated 
in Figure 4.4. In particular, we set up the initial cluster of  clocks 
so  that they all had hands of  the same size and were all reading 
the same time. This specific arrangement corresponds to a particle 
initially at rest within a certain region of  space – a sand grain in a 
matchbox, for example. Although we discovered that the particle 
will most likely not remain at rest, we also discovered that for large 
objects – and a grain of  sand is very large indeed in quantum terms – 
this motion is completely undetectable. So there is some motion in 
our theory, but it is motion that is imperceptible for big enough 
objects. Obviously we are missing something rather important, 
because big things do actually move around, and remember that 
quantum theory is a theory of  all things big and small. We must 
now address this problem: how can we explain motion?



5.  Movement as an Illusion

In the previous chapter we derived Heisenberg’s Uncertainty Prin-
ciple by considering a particular initial arrangement of  clocks – a 
small cluster of  them, each with hands of  the same size and point-
ing in the same direction. We discovered that this represents a 
particle that is approximately stationary, although the quantum 
rules imply that it jiggles around a little. We shall now set up a dif-
ferent initial configuration; we want to describe a particle in motion. 
In Figure 5.1, we’ve drawn a new configuration of  clocks. Again it is 
a cluster of  clocks, corresponding to a particle that is initially located 
in the vicinity of  the clocks. The clock at position 1 reads 12 o’clock, 
as before, but the other clocks in the cluster are now all wound for-
wards by different amounts. We’ve drawn five clocks this time 
simply because it will help make the reasoning more transparent, 
although as before we are to imagine clocks in between the ones we 
have drawn – one for each point in space in the cluster. Let’s apply 
the quantum rule as before and move these clocks to point X, a long 
way outside the cluster, to once again describe the many ways that 
the particle can hop from the cluster to X.

In a procedure that we hope is becoming more routine, let’s take 
the clock from point 1 and propagate it to point X, winding it around 
as we go. It will wind around by an amount

W1 =
mx2

2ht

Now let’s take the clock from point 2 and propagate it to point X. 
It’s a little bit further away, let’s say a distance d further, so it will 
wind a bit more

W2 =
m(x + d)2

2ht
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This is exactly what we did in the previous chapter, but perhaps 
you can already see that something different will happen for this 
new initial configuration of  clocks. We set things up such that clock 2 
was initially wound forwards by three hours relative to clock 1  – 
from 12 o’clock to 3 o’clock. But in carrying clock 2 to point X, we 
have to wind it backwards by a little more than clock 1, correspond-
ing to the extra distance d that it has to travel. If  we arrange things 
so that the initial forward wind of  clock 2 is exactly the same as the 
extra backward wind it gets when travelling to X, then it will arrive 
at X showing exactly the same time as clock 1. This will mean that, far 
from cancelling out, it will add to clock 1 to make a larger clock, 
which in turn means that there will be a high probability that the par-
ticle will be found at X. This is a completely different situation from 
the orgy of  quantum interference that occurred when we began with 
all the clocks reading the same time. Let’s now consider clock 3, 
which we have wound forwards six hours relative to clock 1. This 
clock has to travel an extra distance 2d to make it to point X and 
again, because of  the offset in time, this clock will arrive pointing to 

Figure 5.1: The initial cluster (illustrated by the clocks marked 1 to 5) is made up 
of  clocks that all read different times – they are all shifted by three hours relative 
to their neighbours. The lower part of  the figure illustrates how the time on the 
clocks  varies through the cluster.

5 4 3 2 1

d d d d

λ

X
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12 o’clock. If  we set all the offsets in the same manner, then this will 
happen right across the cluster and all of  the clocks will add together 
constructively at X.

This means that there will be a high probability that the particle 
will be found at the point X at some later time. Clearly point X is 
special because it is that particular point where all the clocks from 
the cluster conspire to read the same time. But point X is not the 
only special point – all points to the left of  X for a distance equal to 
the length of  the original cluster also share the same property that 
the clocks add together constructively. To see this, notice that we 
could take clock 2 and transport it to a point a distance d to the left 
of  X. This would correspond to moving it a distance x, which is 
exactly the same distance that we moved clock 1 when we moved it 
to X. We could then transport clock 3 to this new point through a 
distance x + d, which is exactly the same distance that we previ-
ously moved clock 2. These two clocks should therefore read the 
same time when they arrive and add together. We can keep on doing 
this for all the clocks in the cluster, but only until we reach a dis-
tance to the left of  X equal to the original cluster size. Outside of  
this special region, the clocks largely cancel out because they are no 
longer  protected from the usual orgy of  quantum interference.1 
The interpretation is clear: the cluster of  clocks moves, as illustrated 
in Figure 5.2.

1. You might like to check this explicitly for yourself.

clocks at
time zero

clocks at progressively
later times

Figure 5.2. The cluster of  clocks moves at constant speed to the right. This is 
because the original cluster had its clocks wound relative to each other as 
described in the text.
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This is a fascinating result. By setting up the initial cluster using 
offset clocks rather than clocks all pointing in the same direction, 
we have arrived at the description of  a moving particle. Intriguingly, 
we can also make a very important connection between the offset 
clocks and the behaviour of  waves.

Remember that we were motivated to introduce the clocks back 
in Chapter 2 in order to explain the wave-like behaviour of  particles 
in the double-slit experiment. Look back at Figure 3.3 on page 35, 
where we sketched an arrangement of  clocks that describes a wave. 
It is just like the arrangement of  the clocks in our moving cluster. 
We’ve sketched the corresponding wave below the cluster in Figure 
5.1 using exactly the same methodology as before: 12 o’clock repre-
sents the peak of  the wave, 6 o’clock represents the trough and 3 
o’clock and 9 o’clock represent the places where the wave height is 
zero.

As we might have anticipated, it appears that the representation 
of  a moving particle has something to do with a wave. The wave has 
a wavelength, and this corresponds to the distance between clocks 
showing identical times in the cluster. We’ve also drawn this on the 
figure, and labelled it λ.

We can now work out how far the point X should be away from 
the cluster in order for adjacent clocks to add constructively. This 
will lead us to another very important result in quantum mechan-
ics, and make the connection between quantum particles and waves 
much clearer. Time for a bit more mathematics.

First, we need to write down the extra amount by which clock 2 
is wound relative to clock 1 because it has further to travel to point X. 
Using the results on page 75, this is

W2 − W1 =
m(x + d)2 − mx2

2ht

mxd

ht

Again, you may be able to work this out for yourself  by multiplying 
out the brackets and throwing away the d2 bits because d, the dis-
tance between the clocks, is very small compared to x, the distance 
to point X a long way away from the original cluster.
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It is also straightforward to write down the criterion for the clocks 
to read the same time; we want the extra amount of  winding due to 
the propagation of  clock 2 to be exactly cancelled by the extra for-
ward wind we gave it initially. For the example shown in Figure 5.1, 
the extra wind for clock 2 is 1/4, because we’ve wound the clock 
 forward by a quarter of  a turn. Similarly, clock 3 has a wind of  1/2, 
because we’ve wound it around 1/2 a turn. In symbols, we can express 
the fraction of  one full wind between two clocks quite generally as 
d/λ, where d is the distance between the clocks and λ is the wave-
length. If  you can’t quite see this, just think of  the case for which the 
distance between two clocks is equal to the wavelength. Then d = λ, 
and therefore d/λ = 1, which is one full wind, and both clocks will 
read the same time.

Bringing this all together, we can say that for two adjacent clocks 
to read the same time at point X we require the extra amount of  
wind we put into the initial clock to be equal to the extra amount of  
wind due to the difference in propagation distance:

mxd

ht
=

d

λ

We can simplify this, as we’ve done before, by noticing that mx/t 
is the momentum of  the particle, p. So with a little bit of  rearrange-
ment, we get

p =
h

λ

This result is important enough to warrant a name, and it is called 
the de Broglie equation because it was first proposed in September 
1923 by the French physicist Louis de Broglie. It is important because 
it associates a wavelength with a particle of  a known momentum. 
In other words it expresses an intimate link between a property usu-
ally associated with particles – momentum – and a property usually 
associated with waves – wavelength. In this way, the wave-particle 
duality of  quantum mechanics has emerged from our manipula-
tions with clocks.
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The de Broglie equation constituted a huge conceptual leap. 
In  his original paper, he wrote that a ‘fictitious associated wave’ 
should be assigned to all particles, including electrons, and that a 
stream of  electrons passing through a slit ‘should show diffraction 
phenomena’.2 In 1923, this was theoretical speculation, because 
Davisson and Germer did not observe an interference pattern using 
beams of  electrons until 1927. Einstein made a similar proposal to de 
Broglie’s, using different reasoning, at around the same time, and 
these two theoretical results were the catalyst for Schrödinger to 
develop his wave mechanics. In the last paper before he introduced 
his eponymous equation, Schrödinger wrote: ‘That means nothing 
else but taking seriously the de Broglie–Einstein wave theory of  
moving particles.’

We can gain a little more insight into the de Broglie equation by 
looking at what happens if  we decrease the wavelength, which 
would correspond to increasing the amount of  winding between 
adjacent clocks. In other words, we will reduce the distance between 
clocks reading the same time. This means that we would then have 
to increase the distance x to compensate for the decrease in λ. In 
other words, point X needs to be further away in order for the extra 
winding to be ‘undone’. That corresponds to a faster-moving par-
ticle: smaller wavelength corresponds to larger momentum, which is 
exactly what the de Broglie equation says. It is a lovely result that we 
have managed to ‘derive’ ordinary motion (because the cluster of  
clocks moves smoothly in time) starting from a static array of  clocks.

Wave Packets

We would now like to return to an important issue that we skipped 
over earlier in the chapter. We said that the initial cluster moves in 
its entirety to the vicinity of  point X, but only roughly maintains its 

2. ‘Diffraction’ is a word used to describe a particular type of  interference, and it 
is characteristic of  waves.
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original configuration. What did we mean by that rather imprecise 
statement? The answer provides a link back to the Heisenberg 
Uncertainty Principle, and delivers further insight.

We have been describing what happens to a cluster of  clocks, 
which represents a particle that can be found somewhere within a 
small region of  space. That’s the region spanned by our five clocks 
in Figure 5.1. A cluster like this is referred to as a wave packet. But 
we have already seen that confining a particle to some region in 
space has consequences. We cannot prevent a localized particle 
from getting a Heisenberg kick (i.e. its momentum is uncertain 
because it is localized), and as time passes this will lead to the par-
ticle ‘leaking out’ of  the region within which it was initially located. 
This effect was present for the case where the clocks all read the 
same time and it is present in the case of  the moving cluster too. It 
will tend to spread the wave packet out as it travels, just as a station-
ary particle spreads out over time.

If  we wait long enough, the wave packet corresponding to the 
moving cluster of  clocks will have totally disintegrated and we’ll 
lose any ability to predict where the particle actually is. This will 
obviously have implications for any attempt we might make to 
measure the speed of  our particle. Let’s see how this works out.

A good way to measure a particle’s speed is to make two meas-
urements of  its position at two different times. We can then deduce 
the speed by dividing the distance the particle travelled by the time 
between the two measurements. Given what we’ve just said, how-
ever, this looks like a dangerous thing to do because if  we make a 
measurement of  the position of  a particle too precisely then we are 
in danger of  squeezing its wave packet, and that will change its sub-
sequent motion. If  we don’t want to give the particle a significant 
Heisenberg kick (i.e. a significant momentum because we make ∆x 
too small) then we must make sure that our position measurement 
is sufficiently vague. Vague is, of  course, a vague term, so let’s make 
it less so. If  we use a particle detection device that is capable of  
detecting particles to an accuracy of  1 micrometre and our wave 
packet has a width of  1 nanometre, then the detector won’t have 
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much impact on the particle at all. An experimenter reading out the 
detector might be very happy with a resolution of  1 micron but, 
from the electron’s perspective, all the detector did was report back 
to the experimenter that the particle is in some huge box, a thou-
sand times bigger than the actual wave packet. In this case, the 
Heisenberg kick induced by the measurement process will be very 
small compared to that induced by the finite size of  the wave packet 
itself. That’s what we mean by ‘sufficiently vague’.

We’ve sketched the situation in Figure 5.3 and have labelled the ini-
tial width of  the wave packet d and the resolution of  our detector ∆. 
We’ve also drawn the wave packet at a later time; it’s a little broader 
and has a width d , which is bigger than d. The peak of  the wave 
packet has travelled a distance L over some time interval t at a speed 
v. Apologies if  that particular flourish of  formality reminds you of  
your long-forgotten school days sitting behind a stained and eroded 
wooden bench listening to a science teacher’s voice fading into the 
half-light of  a late winter’s afternoon as you slide into an inappropri-
ate nap. We are covering ourselves in chalk dust for good reason, 
and it is our hope that the conclusion of  this section will jolt you 
back to consciousness more effectively than the flying board dusters 
of  your youth.

Back in the metaphorical science lab, with renewed vigour, we 
are trying to measure the speed v of  the wave packet by making two 

Figure 5.3. A wave packet at two different times. The packet moves to the right 
and spreads out as time advances. The packet moves because the clocks that con-
stitute it are wound around relative to each other (de Broglie) and it spreads out 
because of  the Uncertainty Principle. The shape of  the packet is not very import-
ant but, for completeness, we should say that where the packet is large the clocks 
are large, and where it is small the clocks are small.

∆
L =   t

′



83

Movement as an Illusion

measurements of  its position at two different times. This will give 
us the distance L that the wave packet has travelled in a time t. But 
our detector has a resolution ∆, so we won’t be able to pin down L 
exactly. In symbols, we can say that the measured speed is

v =
L ± ∆

t

where the combined plus or minus sign is there simply to remind us 
that, if  we actually make the two position measurements, we will 
generally not always get L but instead ‘L plus a bit’ or ‘L minus a bit’, 
where the ‘bit’ is due to the fact we agreed not to make a very accur-
ate measurement of  the particle’s position. It is important to bear in 
mind that L is not something we can actually measure: we always 
measure a value somewhere in the range L ± ∆. Remember also 
that we need ∆ to be much larger than the size of  the wave packet 
otherwise we will squeeze the particle and that will disrupt it.

Let’s rewrite the last equation very slightly so that we can better 
see what’s going on:

v =
L

t
± ∆

t  

It seems that if  we take t to be very large then we will get a meas-
urement of  the speed v = L/t with a very tiny spread, because we can 
choose to wait around for a very long time, making t as large as we 
like and consequently ∆/t as small as we like whilst still keeping ∆ 
comfortably large. This looks like we have a nice way to make an 
arbitrarily precise measurement of  the particle’s speed without dis-
turbing it at all; just wait for a huge amount of  time between the 
first and the second measurements. This makes perfect intuitive 
sense. Imagine you are measuring the speed of  a car driving along 
a road. If  you measure how far it has travelled in one minute, you 
will tend to get a much more precise measurement of  its speed than 
if  you measure how far it travelled in one second. Have we dodged 
Heisenberg?

Of  course not  – we have forgotten to take something into 
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account. The particle is described by a wave packet that spreads out 
as time passes. Given enough time, the spreading out will com-
pletely wash out the wave packet and that means the particle could 
be anywhere. This will increase the range of  values we get in our 
measurement of  L and spoil our ability to make an arbitrarily accur-
ate measurement of  its speed.

For a particle described by a wave packet, we are ultimately still 
bound by the Uncertainty Principle. Because the particle is initially 
confined in a region of  size d, Heisenberg informs us that the par-
ticle’s momentum is correspondingly blurred out by an amount 
equal to h/d.

There is therefore only one way we can build a configuration of  
clocks to represent a particle that travels with a definite momentum – 
we must make d, the size of  the wave packet, very large. And the 
larger we make it, the smaller the uncertainty in its momentum will 
be. The lesson is clear: a particle of  well-known momentum is 
described by a large cluster of  clocks.3 To be precise, a particle of  
absolutely definite momentum will be described by an infinitely 
long cluster of  clocks, which means an infinitely long wave packet.

We have just argued that a finite-size wave packet does not cor-
respond to a particle with a definite momentum. This means that if  
we measured the momentum of  very many particles, all described 
by exactly the same initial wave packet, then we would not get the 
same answer each time. Instead we would get a spread of  answers 
and it does not matter how brilliant we are at experimental physics, 
that spread cannot be made smaller than h/d.

We can therefore say that a wave packet describes a particle that is 
travelling with a range of  momenta. But the de Broglie equation 
implies that we can just substitute the word ‘wavelengths’ for 
‘momenta’ in the last sentence, because a particle’s momentum is 

3. Of  course if d is very large then one might wonder how we can even measure 
the momentum. That concern is sidestepped by ensuring that no matter how big  
d is, L is much bigger than it.
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associated with a wave of  definite wavelength. This in turn means 
that a wave packet must be made up of  many different wavelengths. 
Likewise, if  a particle is described by a wave with a definite wave-
length then that wave must necessarily be infinitely long. It sounds 
like we are being pushed to conclude that a small wave packet is 
made up of  many infinitely long waves of  different wavelengths. We 
are indeed being pushed down this route, and what we are describ-
ing is very familiar to mathematicians, physicists and engineers alike. 
This is an area of  mathematics known as Fourier analysis, named 
after the French mathematical physicist Joseph Fourier.

Fourier was a colourful man. Amongst his many notable achieve-
ments, he was Napoleon’s governor of  Lower Egypt and the 
discoverer of  the greenhouse effect. He apparently enjoyed wrap-
ping himself  up in blankets, which led to his untimely demise one 
day in 1830 when, tightly wrapped, he fell down his own stairs. His 
key paper on Fourier analysis addressed the subject of  heat transfer 
in solids and was published in 1807, although the basic idea can be 
traced back much earlier.

Fourier showed that any wave at all, of  arbitrarily complex shape 
and extent, can be synthesized by adding together a number of  sine 
waves of  different wavelengths. The point is best illustrated through 
pictures. In Figure 5.4 the dotted curve is made by adding together 
the first two sine waves in the lower graphs. You can almost do the 
addition in your head – the two waves are both at maximum height 
in the centre, and so they add together there, whilst they tend to 
cancel each other out at the ends. The dashed curve is what happens 
if  we add together all four of  the waves illustrated in the lower 
graphs – now the peak in the centre is becoming more pronounced. 
Finally, the solid curve shows what happens when we add together 
the first ten waves, i.e. the four shown plus six more of  progres-
sively decreasing wavelength. The more waves we add in to the mix, 
the more detail we can achieve in the final wave. The wave packet in 
the upper graph could describe a localized particle, rather like the 
wave packet illustrated in Figure 5.3. In this way it really is possible 
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to synthesize a wave of  any shape at all – it is all achieved by adding 
together simple sine waves.

The de Broglie equation informs us that each of  the waves in 
the lower graphs of  Figure 5.4 corresponds to a particle with a def-
inite momentum, and the momentum increases as the wavelength 

Figure 5.4. Upper graph: Adding together several sine waves to synthesize a 
sharply peaked wave packet. The dotted curve contains fewer waves than the 
dashed one, which in turn contains fewer than the solid one. Lower graphs: The 
first four waves used to build up the wave packets in the upper graph.
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decreases. We are beginning to see why it is that if  a particle is 
described by a localized cluster of  clocks then it must necessarily be 
made up of  a range of  momenta.

To be more explicit, let’s suppose that a particle is described by 
the cluster of  clocks represented by the solid curve in the upper 
graph in Figure 5.4.4 We have just learnt that this particle can also be 
described by a series of  much longer clusters of  clocks: the first 
wave in the lower graphs plus the second wave in the lower graphs, 
plus the third wave in the lower graphs, and so on. In this way of  
thinking, there are several clocks at each point (one from each long 
cluster), which we should add together to produce the single clock 
cluster represented in upper graph of  Figure 5.4. The choice of  how 
to think about the particle is really ‘up to you’. You can think of  it as 
being described by one clock at each point, in which case the size 
of the clock immediately lets you know where the particle is likely 
to be found, i.e. in the vicinity of  the peak in the upper graph of  
Figure 5.4. Alternatively, you can think of  it as being described by a 
number of  clocks at each point, one for each possible value of  the 
momentum of  the particle. In this way we are reminding ourselves 
that the particle localized in a small region does not have a definite 
momentum. The impossibility of  building a compact wave packet 
from a single wavelength is an evident feature of  Fourier’s math-
ematics.

This way of  thinking provides us with a new perspective on 
Heisenberg’s Uncertainty Principle. It says that we cannot describe 
a particle in terms of  a localized cluster of  clocks using clocks 
 corresponding to waves of  a single wavelength. Instead, to get the 
clocks to cancel outside the region of  the cluster, we must necessar-
ily mix in different wavelengths and hence different momenta. So, 
the price we pay for localizing the particle to some region in space 
is to admit we do not know what its momentum is. Moreover, the 
more we restrict the particle, the more waves we need to add in and 

4. Recall that when we draw pictures of  waves, they are really a convenient way 
of picturing what the projections of  the clock hands in the 12 o’clock direction are.
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the less well we know its momentum. This is exactly the content of  
the Uncertainty Principle, and it is very satisfying to have found a 
different way of  reaching the same conclusion.5

To close this chapter we want to spend a little more time with 
Fourier. There is a very powerful way of  picturing quantum theory 
that is intimately linked to the ideas we have just been discussing. 
The important point is that any quantum particle, whatever it is 
doing, is described by a wavefunction. As we’ve presented it so far, 
the wavefunction is simply the array of  little clocks, one for each 
point in space, and the size of  the clock determines the probability 
that the particle will be found at that point. This way of  represent-
ing a particle is called the ‘position space wavefunction’ because it 
deals directly with the possible positions that a particle can have. 
There are, however, many ways of  representing the wavefunction 
mathematically, and the little clocks in space version is only one of  
them. We touched on this when we said it is possible to think of  the 
particle as also being represented by a sum over sine waves. If  you 
ponder this point for a moment, you should realize that specifying 
the complete list of  sine waves actually provides a complete descrip-
tion of  the particle (because by adding together these waves we can 
obtain the clocks associated with the position space wavefunction). 
In other words, if  we specify exactly which sine waves are needed to 
build a wave packet, and exactly how much of  each sine wave we 
need to add in to get the shape just right, then we will have a differ-
ent but entirely equivalent description of  the wave packet. The neat 
thing is that any sine wave can itself  be described by a single imagin-
ary clock: the size of  the clock encodes the maximum height of  the 
wave and the phase of  the wave at some point can be represented by 
the time that the clock reads. This means that we can choose to rep-
resent a particle not by clocks in space but by an alternative list of  
clocks, one for each possible value of  the particle’s momentum. 
This description is just as economical as the ‘clocks in space’ descrip-

5. This way of  arriving at the Uncertainty Principle did, however, rely on the de 
Broglie equation in order to link the wavelength of  a clock wave to its momentum.
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tion, and instead of  making explicit where the particle is likely to be 
found we are instead making explicit what values of  momentum 
the particle is likely to have. This alternative array of  clocks is 
known as the momentum space wavefunction and it contains 
exactly the same information as the position space wavefunction.6

This might sound very abstract, but you may well use technol-
ogy based on Fourier’s ideas every day, because the decomposition 
of  a wave into its component sine waves is the foundation of  audio 
and video compression technology. Think about the sound waves 
that make up your favourite tune. This complicated wave can, as we 
have just learnt, be broken down into a series of  numbers that give 
the relative contributions of  each of  a large number of  pure sine 
waves to the sound. It turns out that, although you may need a vast 
number of  individual sine waves to reproduce the original sound 
wave exactly, you can in fact throw a lot of  them away without com-
promising the perceived audio quality at all. In particular, the sine 
waves that contribute to sound waves that humans can’t hear are 
not kept. This vastly reduces the amount of  data needed to store an 
audio file – hence your mp3 player doesn’t need to be too large.

We might also ask what possible use could this different and even 
more abstract version of  the wavefunction be? Well, think of  a par-
ticle represented, in position space, by a single clock. This describes 
a particle located at a certain place in the Universe; the single point 
where the clock sits. Now think of  a particle represented by a single 
clock, but this time in momentum space. This represents a particle 
with a single, definite momentum. Describing such a particle using 
the position space wavefunction would, in contrast, require an infinite 
number of  equally sized clocks, because according to the Uncer-
tainty Principle, a particle with a definite momentum can be found 
anywhere. As a result, it is sometimes simpler to  perform calcula-
tions directly in terms of  the momentum space wavefunction.

6. In the jargon, the momentum space wavefunctions that correspond to particles 
with definite momentum are known as momentum eigenstates, after the Ger-
man word eigen, meaning ‘characteristic’.
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In this chapter, we have learnt that the description of  a particle in 
terms of  clocks is capable of  capturing what we ordinarily call 
‘movement’. We have learnt that our perception that objects move 
smoothly from point to point is, from the perspective of  quantum 
theory, an illusion. It is closer to the truth to suppose that particles 
move from A to B via all possible paths. Only when we add together 
all of  the possibilities does motion as we perceive it emerge. We have 
also seen explicitly how the clock description manages to encode the 
physics of  waves, even though we only ever deal with point-like par-
ticles. It is time now to really exploit the similarity with the physics 
of  waves as we tackle the important question: how does quantum 
theory explain the structure of  atoms?



6.  The Music of  the Atoms

The interior of  an atom is a strange place. If  you could stand on a 
proton and gaze outwards into inter-atomic space, you would see 
only void. The electrons would still be imperceptibly tiny even if  
they approached close enough for you to touch them, which they 
very rarely would. The proton is around 10−15 m in diameter,
0.000000000000001 metres, and is a quantum colossus compared to 
the electrons. If  you stand on your proton at the edge of  England 
on the White Cliffs of  Dover, the fuzzy edge of  the atom lies some-
where amongst the farms of  northern France. Atoms are vast and 
empty, which means the full-size you is vast and empty too. Hydro-
gen is the simplest atom, comprising a single proton and a single 
electron. The electron, vanishingly small as far as we can tell, might 
seem to have a limitless arena within which to roam, but this is not 
true. It is bound to its proton, trapped by their mutual electromag-
netic attraction, and it is the size and shape of  this generous prison 
that gives rise to the characteristic barcode rainbow of  light meticu-
lously documented in the Handbuch  der  Spectroscopie by our old 
friend and dinner-party guest Professor Kayser.

We are now in a position to apply the knowledge we have accu-
mulated so far to the question that so puzzled Rutherford, Bohr and 
others in the early decades of  the twentieth century: what exactly is 
going on inside an atom? The problem, if  you recall, was that Ruther-
ford discovered that the atom is in some ways like a miniature solar 
system, with a dense nucleus Sun at the centre and electrons as plan-
ets sweeping around in distant orbits. Rutherford knew that this 
model couldn’t be right, because electrons in orbit around a nucleus 
should continually emit light. The result should be catastrophic for 
the atom, because if  the electron continually emits light then it must 
lose energy and spiral inwards on an inevitable collision course with 
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the proton. This, of  course, doesn’t happen. Atoms tend to be stable 
things, so what is wrong with this picture?

This chapter marks an important stage in the book, because it is 
the first time that our theory is to be used to explain real-world phe-
nomena. All our hard work to this point has been concerned with 
getting the essential formalism worked out so that we have a way to 
think about a quantum particle. Heisenberg’s Uncertainty Principle 
and the de Broglie equation represent the pinnacle of  our achieve-
ments, but in the main we have been modest, thinking about a 
universe containing just one particle. It is now time to show how 
quantum theory impacts on the everyday world in which we live. 
The structure of  atoms is a very real and tangible thing. You are 
made of  atoms: their structure is your structure, and their stability 
is your stability. It would not be unduly hyperbolic to say that under-
standing the structure of  atoms is one of  the necessary conditions 
for understanding our Universe as a whole.

Inside a hydrogen atom, the electron is trapped in a region sur-
rounding the proton. We are going to start by imagining that the 
electron is trapped in some sort of  box, which is not very far from 
the truth. Specifically, we’ll investigate to what extent the physics of  
an electron trapped inside a tiny box captures the salient features of  
a real atom. We are going to proceed by exploiting what we learnt 
in the previous chapter about the wave-like properties of  quantum 
particles, because, when it comes to describing atoms, the wave pic-
ture really simplifies things and we can make a good deal of  progress 
without having to worry about shrinking, winding and adding 
clocks. Always bear in mind, though, that the waves are a conveni-
ent shorthand for what is going on ‘under the bonnet’.

Because the framework we’ve developed for quantum particles is 
extremely similar to that used in the description of  water waves, 
sound waves or the waves on a guitar string, we’ll think first about 
how these more familiar material waves behave when they are con-
fined in some way.

Generally speaking, waves are complicated things. Imagine jump-
ing into a swimming pool full of  water. The water will slosh around 
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all over the place, and it would seem to be futile to try to describe 
what is going on in any simple fashion. Underlying the complexity, 
however, there is hidden simplicity. The key point is that the water 
in a swimming pool is confined, which means that all the waves 
are trapped inside the pool. This gives rise to a phenomenon known 
as ‘standing waves’. The standing waves are hidden away in the 
mess when we disturb the pool by jumping into it, but there is a way 
to make the water move so that it oscillates in the regular, repeating 
patterns of  the standing waves. Figure 6.1 shows how the water sur-
face looks when it is undergoing one such oscillation. The peaks 
and troughs rise and fall, but most importantly they rise and fall in 
exactly the same place. There are other standing waves too, includ-
ing one where the water in the middle of  the tank rises and falls 
rhythmically. We do not usually see these special waves because 
they are hard to produce, but the key point is that any disturbance 
of  the water at all – even the one we caused by our inelegant dive 
and subsequent thrashing around – can be expressed as some com-
bination or other of  the different standing waves. We’ve seen this 
type of  behaviour before; it is a direct generalization of  Fourier’s 
ideas that we encountered in the last chapter. There, we saw that 

Figure 6.1. Six successive snapshots of  a standing wave in a tank of  water. The 
time advances from the top left to the bottom right.



94

The Quantum Universe

any wave packet can be built up out of  a combination of  waves each 
of  definite wavelength. These special waves, representing particle 
states of  definite momentum, are sine waves. In the case of  con-
fined water waves, the idea generalizes so that any disturbance can 
always be described using some combination of  standing waves. 
We’ll see later in this chapter that standing waves have an important 
interpretation in quantum theory, and in fact they hold the key to 
understanding the structure of  atoms. With this in mind, let’s 
explore them in a little more detail.

Figure 6.2 shows another example of  standing waves in Nature: 
three of  the possible standing waves on a guitar string. On plucking 
a guitar string, the note we hear is usually dominated by the stand-
ing wave with the largest wavelength – the first of  the three waves 
shown in the figure. This is known in both physics and music as the 
‘lowest harmonic’ or ‘fundamental’. Other wavelengths are usually 
present too, and they are known as overtones or higher harmonics. 
The other waves in the figure are the two longest-wavelength over-

Figure 6.2. The three longest wavelength waves that can fit on a guitar string. The 
longest wavelength (at the top) corresponds to the lowest harmonic (fundamen-
tal) and the others correspond to the higher harmonics (overtones).
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tones. The guitar is a nice example because it’s simple enough to see 
why a guitar string can only vibrate at these special wavelengths. It 
is because it is held fixed at both ends – by the guitar bridge at one 
end and your finger pressing against a fret at the other. This means 
that the string cannot move at these two points, and this determines 
the allowed wavelengths. If  you play the guitar, you’ll know this 
physics instinctively; as you move your fingers up the fret board 
towards the bridge, you decrease the length of  the string and there-
fore force it to vibrate with shorter and shorter wavelengths, 
corresponding to higher-pitched notes.

The lowest harmonic is the wave that has only two stationary 
points, or ‘nodes’; it moves everywhere except at the two fixed ends. 
As you can see from the figure, this note has a wavelength of  twice 
the length of  the string. The next smallest wavelength is equal to 
the length of  the string, because we can fit another node in the 
centre. Next, we can get a wave with wavelength equal to 2/3 times 
the length of  the string, and so on.

In general, just as in the case of  the water confined in a swimming 
pool, the string will vibrate in some combination of  the different 
possible standing waves, depending on how it is plucked. The actual 
shape of  the string can always be obtained by adding together the 
standing waves corresponding to each of  the harmonics present. 
The harmonics and their relative sizes give the sound its character-
istic tone. Different guitars will have different distributions of  
harmonics and therefore sound different, but a middle C (a pure har-
monic) on one guitar is always the same as a middle C on another. 
For the guitar, the shape of  the standing waves is very simple: they 
are pure sine waves whose wavelengths are fixed by the length of  the 
string. For the swimming pool, the standing waves are more compli-
cated, as shown in Figure 6.1, but the idea is exactly the same.

You may be wondering why these special waves are called ‘stand-
ing waves’. It is because the waves do not change their shape. If  we 
take two snapshots of  a guitar string vibrating in a standing wave, 
then the two pictures will only differ in the overall size of  the wave. 
The peaks will always be in the same place, and the nodes will 
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always be in the same place because they are fixed by the ends of  the 
string or, in the case of  the swimming pool, by the sides of  the pool. 
Mathematically, we could say that the waves in the two snapshots 
differ only by an overall multiplicative factor. This factor varies peri-
odically with time, and expresses the rhythmical vibration of  the 
string. The same is true for the swimming pool in Figure 6.1, where 
each snapshot is related to the others by an overall multiplicative 
factor. For example, the last snapshot can be obtained from the first 
by multiplying the wave height at every point by minus one.

In summary, waves that are confined in some way can always be 
expressed in terms of  standing waves (waves that do not change 
their shape) and, as we have said, there are very good reasons for 
devoting so much time to understanding them. At the top of  the list 
is the fact that standing waves are quantized. This is very clear for the 
standing waves on a guitar string: the fundamental has a wavelength 
of  twice the length of  the string, and the next longest allowed wave-
length is equal to the length of  the string. There is no standing wave 
with a wavelength in between these two and so we can say that the 
allowed wavelengths on a guitar string are quantized.

Standing waves therefore make manifest the fact that something 
gets quantized when we trap waves. In the case of  a guitar string, it 
is clearly the wavelength. For the case of  an electron inside a box, 
the quantum waves corresponding to the electron will also be 
trapped, and by analogy we should expect that only certain stand-
ing waves will be present in the box, and therefore that something 
will be quantized. Other waves simply cannot exist, just as a guitar 
string doesn’t play all the notes in an octave at the same time no 
matter how it is plucked. And just as for the sound of  a guitar, the 
general state of  the electron will be described by a blend of  standing 
waves. These quantum standing waves are starting to look very 
interesting, and, encouraged by this, let’s start our analysis proper.

To make progress, we must be specific about the shape of  the 
box inside which we place our electron. To keep things simple, we’ll 
suppose that the electron is free to hop around inside a region of  
size L, but that it is totally forbidden from wandering outside this 



97

The Music of  the Atoms

region. We do not need to say how we intend to forbid the electron 
from wandering – but if  this is supposed to be a simplified model of  
an atom then we should imagine that the force exerted by the posi-
tively charged nucleus is responsible for its confinement. In the jargon, 
this is known as a ‘square well potential’. We’ve sketched the situation 
in Figure 6.3, and the reason for the name should be obvious.

The idea of  confining a particle in a potential is a very important 
one that we’ll use again, so it will be useful to make sure we under-
stand exactly what it means. How do we actually trap particles? 
That is quite a sophisticated question; to get to the bottom of  it 
we’ll need to learn about how particles interact with other particles, 
which we will do in Chapter 10. Nevertheless, we can make pro-
gress provided we don’t ask too many questions.

The ability ‘not to ask too many questions’ is a necessary skill in 
physics because we have to draw the line somewhere in order to 
answer any questions at all; no system of  objects is perfectly isolated. 
It seems reasonable that if  we want to understand how a microwave 
oven works, we don’t need to worry about any traffic passing by 

Figure 6.3. An electron trapped in a square well potential.
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outside. The traffic will have a tiny influence on the operation of  the 
oven. It will induce vibrations in the air and ground which will shake 
the oven a little bit. There may also be stray magnetic fields that influ-
ence the internal electronics of  the oven, no matter how well they are 
shielded. It is possible to make mistakes in ignoring things because 
there might be some crucial detail that we miss. If  this is the case, 
we’ll simply get the wrong answer and have to reconsider our assump-
tions. This is very important, and goes to the heart of  the success of  
science; all assumptions are ultimately validated or negated by experi-
ment. Nature is the arbiter, not human intuition. Our strategy here is 
to ignore the details of  the mechanism that traps the electron and 
model it by something called a potential. The word ‘potential’ really 
just means ‘an effect on the particle due to some physics or other that 
I will not bother to explain in detail’. We will bother to describe in 
detail how particles interact later on, but for now we’ll talk in the lan-
guage of  potentials. If  this sounds a bit cavalier, let us give an example 
to illustrate how potentials are used in physics.

Figure 6.4. A ball sitting on a valley floor. The height of  the ground above sea-
level is directly proportional to the potential that the particle experiences when it 
rolls around.
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level ground

valley �oor



99

The Music of  the Atoms

Figure 6.4 illustrates a ball trapped in a valley. If  we give the ball 
a kick then it can roll up the valley, but only so far, and then it will 
roll back down again. This is an excellent example of  a particle 
trapped by a potential. In this case, the Earth’s gravitational field 
generates the potential and a steep hill makes a steep potential. It 
should be clear that we could calculate the details of  how a ball rolls 
around in a valley without knowing the precise details of  how the 
valley floor interacts with the ball – for this we’d have to know about 
the theory of  quantum electrodynamics. If  it turned out that the 
details of  the inter-atomic interactions between the atoms in the 
ball and the atoms in the valley floor affected the motion of  the ball 
too much, then the predictions we make would be wrong. In fact, 
the inter-atomic interactions are important because they give rise to 
friction, but we can also model this without getting into Feynman 
diagrams. But we digress.

This example is very tangible because we can literally see the 
shape of  the potential1. However, the idea is more general and 
works for potentials other than those created by gravity and valleys. 
An example is the electron trapped in a square well. Unlike the case 
of  the ball in a valley, the height of  the walls is not the actual height 
of  anything; rather it represents how fast the electron needs to be 
moving before it can escape from the well. For the case of  a valley, 
this would be analogous to rolling the ball so fast that it climbed up 
the walls and out of  the valley. If  the electron is moving slowly 
enough then the actual height of  the potential won’t matter much, 
and we can safely assume that the electron is confined to the inter-
ior of  the well.

Let us now focus on the electron trapped inside a box described 
by a square well potential. Since it cannot escape from the box, the 
quantum waves must fall to zero at the edges of  the box. The three 
possible quantum waves with the largest wavelengths are then 

1. The fact that the gravitational potential exactly maps the terrain is because, in 
the vicinity of  the Earth’s surface, the gravitational potential is proportional to 
the height above the ground.
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entirely analogous to the guitar-string waves illustrated in Figure 6.2: 
the longest possible wavelength is twice the size of  the box, 2L; the 
next longest wavelength is equal to the size of  the box, L; and the 
next again has a wavelength of  2L/3. Generally, we can fit electron 
waves with wavelength 2L/n in the box where n = 1, 2, 3, 4, etc.

Specifically for the square box, therefore, the electron waves are 
precisely the same shape as the waves on a guitar string; they are 
sine waves with a very particular set of  allowed wavelengths. Now 
we can go ahead and invoke the de Broglie equation from the last 
chapter to relate the wavelength of  these sine waves to the momen-
tum of  the electron via p = h/λ. In which case, the standing waves 
describe an electron that is only allowed to have certain momenta, 
given by the formula p = nh/(2L), where all we did here was to 
insert the allowed wavelengths into the de Broglie equation.

And so it is that we have demonstrated that the momentum of  
our electron is quantized in a square well. This is a big deal. However, 
we do need to take care. The potential in Figure 6.3 is a special case, 
and for other potentials the standing waves are not generally sine 
waves. Figure 6.5 shows a photograph of  the standing waves on a 
drum. The drum skin is sprinkled with sand, which collects at the 
nodes of  the standing wave. Because the boundary enclosing the 
vibrating drum skin is circular, rather than square, the standing 
waves are no longer sine waves.2 This means that, as soon as we 
move to the more realistic case of  an electron trapped by a proton, 
its standing waves will likewise not be sine waves. In turn this means 
that the link between wavelength and momentum is lost. How, then, 
are we to interpret these standing waves? What is it that is generally 
quantized for trapped particles, if  it isn’t their momentum?

We can get the answer by noticing that in the square well poten-
tial, if  the electron’s momentum is quantized, then so too is its 
energy. That is a simple observation and appears to contain no 
important new information, since energy and momentum are 
simply related to each other. Specifically, the energy E = p2/2m, 

2. They are in fact described by Bessel functions.



101

The Music of  the Atoms

where p is the momentum of  the trapped electron and m is its 
mass.3 This is not such a pointless observation as it might appear, 
because, for potentials that are not as simple as the square well, each 
standing wave always corresponds to a particle of  definite energy.

The important difference between energy and momentum emerges 
because E = p2/2m is only true when the potential is flat in the 
region where the particle can exist, allowing the particle to move 
freely, like a marble on a table top or, more to the point, an electron 
in a square well. More generally, the particle’s energy will not be 
equal to E = p2/2m; rather it will be the sum of  the energy due 
to its motion and its potential energy. This breaks the simple link 
between the particle’s energy and its momentum.

3. This is obtained using the fact that the energy is equal to 1/2(½mv2) and p = mv . These 
equations do get modified by Special Relativity but the effect is small for an elec-
tron inside a hydrogen atom.

Figure 6.5. A vibrating drum covered in sand. The sand collects at the nodes of  
the standing waves.
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We can illustrate this point by thinking again about the ball in a 
valley, shown in Figure 6.4. If  we start with the ball resting happily 
on the valley floor, then nothing happens.4 To make it roll up the 
side of  the valley, we’d have to give it a kick, which is equivalent to 
saying that we need to add some energy to it. The instant after we 
kick the ball, all of  its energy will be in the form of  kinetic energy. As 
it climbs the side of  the valley, the ball will slow down until, at some 
height above the valley floor, it will come to a halt before rolling back 
down again and up the other side. At the moment it stops, high up 
the valley side, it has no kinetic energy, but the energy hasn’t just 
magically vanished. Instead, all of  the kinetic energy has been 
changed into potential energy, equal to mgh, where g is the acceler-
ation due to gravity at the Earth’s surface and h is the height of  the 
ball above the valley floor. As the ball starts to roll back down into 
the valley, this stored potential energy is gradually converted back 
into kinetic energy as the ball speeds up again. So as the ball rolls 
from one side of  the valley to the other, the total energy remains 
constant, but it periodically switches between kinetic and potential. 
Clearly, the ball’s momentum is constantly changing, but its energy 
remains constant (we have pretended that there is no friction to slow 
the ball down. If  we did include it then the total energy would still be 
constant but only after including the energy dissipated via friction).

We are now going to explore the link between standing waves 
and particles of  definite energy in a different way, without appeal-
ing to the special case of  the square well. We’ll do this using those 
little quantum clocks.

First, notice that, if  an electron is described by a standing wave at 
some instant in time, then it will be described by the same standing 
wave at some later time. By ‘the same’, we mean that the shape of  the 
wave is unchanged, as was the case for the standing water wave in 
Figure 6.1. We don’t, of  course, mean that the wave does not change 

4. This is a big ball and we don’t need to worry about any quantum jiggling. But, 
if  the thought crossed your mind, it is a good sign: your intuition is becoming 
quantized.
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at all; the water height does change, but crucially the positions of  the 
peaks and nodes do not. This allows us to figure out what the quan-
tum clock description of  a standing wave must look like, and it is 
illustrated in Figure 6.6 for the case of  the fundamental standing 
wave. The clock sizes along the wave reflect the position of  the 
peaks and nodes, and the clock hands sweep around together at the 
same rate. We hope you can see why we’ve drawn this particular 
pattern of  clocks. The nodes must always be nodes, the peaks must 
always be peaks and they must always stay in the same place. This 
means that the clocks sitting in the vicinity of  the nodes must always 
be very small, and the clocks representing the peaks must always 
have the longest hands. The only freedom we have, therefore, is to 
allow the clocks to sit where we put them and rotate in sync.

If  we were following the methodology of  the earlier chapters, 
we would now start from the configuration of  clocks shown in the 

early time

later time

Figure 6.6: Four snapshots of  a standing wave at successively later times. The 
arrows represent the clock hands and the dotted line is the projection onto the 
‘12 o’clock’ direction. The clocks all turn around in unison.
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top row of  Figure 6.6 and use the shrinking and turning rules to 
generate the bottom three rows at later times. This exercise in clock 
hopping is a hop too far for this book, but it can be done, and there 
is a nice twist because to do it correctly it is necessary to include the 
possibility that the particle ‘bounces off  the walls of  the box’ before 
hopping to its destination. Incidentally, because the clocks are big-
ger in the centre, we can immediately conclude that an electron 
described by this array of  clocks is more likely to be found in the 
middle of  the box than at the edges.

So, we have found that the trapped electron is described by an 
array of  clocks that all whizz around at the same rate. Physicists 
don’t usually talk like this, and musicians certainly don’t; they both 
say that standing waves are waves of  definite frequency.5 High- 
frequency waves correspond to clocks that whizz around faster than 
the clocks of  low-frequency waves. You can see this because, if  a 
clock whizzes around faster, then the time it takes a peak to turn 
into a trough and then rise back again (represented by a single rota-
tion of  the clock hand) decreases. In terms of  water waves, the 
high-frequency standing waves move up and down faster than the 
low-frequency ones. In music, a middle C is said to have a frequency 
of  262 Hz, which means that, on a guitar, the string vibrates up and 
down 262 times every second. The A above middle C has a fre-
quency of  440 Hz, so it vibrates more rapidly (this is the agreed 
tuning standard for most orchestras and musical instruments across 
the world). As we’ve noted, however, it is only for pure sine waves 
that these waves of  definite frequency also have definite wavelength. 
Generally speaking, frequency is the fundamental quantity that 
describes standing waves, and this sentence is probably a pun.

The million-dollar question, then, is ‘What does it mean to speak 
of  an electron of  a certain frequency?’ We remind you that these 
electron states are interesting to us because they are quantized and 
because an electron in one such state remains in that state for all 

5. Actually, musicians probably don’t say this either, and drummers definitely 
don’t, because ‘frequency’ is a word with more than two syllables.
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time (unless something enters the region of  the potential and gives 
the electron a whack).

That last sentence is the big clue we need to establish the signifi-
cance of  ‘frequency’. We encountered the law of  energy conservation 
earlier in the chapter, and it is one of  the few non-negotiable laws of  
physics. Energy conservation dictates that if  an electron inside a 
hydrogen atom (or a square well) has a particular energy, then that 
energy cannot change until ‘something happens’. In other words, an 
electron cannot spontaneously change its energy without a reason. 
This might sound uninteresting, but contrast this with the case of  
an electron that is known to be located at a point. As we know very 
well, the electron will leap off  across the Universe in an instant, 
spawning an infinity of  clocks. But the standing wave clock pattern 
is different. It keeps its shape, with all the clocks happily rotating 
away for ever unless something disturbs them. The unchanging 
nature of  standing waves therefore makes them a clear candidate to 
describe an electron of  definite energy.

Once we make the step of  associating the frequency of  a standing 
wave with the energy of  a particle then we can exploit our knowledge 
of  guitar strings to infer that higher frequencies must correspond to 
higher energies. That is because high frequency implies short wave-
length (since short strings vibrate faster) and, from what we know of  
the special case of  the square well potential, we can anticipate that a 
shorter wavelength corresponds to a higher-energy particle via de 
Broglie. The important conclusion, therefore, and all that really 
needs to be remembered for what follows, is that standing  waves 
describe particles of  definite energy and the higher the energy the faster the 
clocks whizz round.

In summary, we have deduced that when an electron is confined 
by a potential, its energy is quantized. In the physics jargon, we say 
that a trapped electron can only exist in certain ‘energy levels’. The 
lowest energy the electron can have corresponds to its being 
described by the ‘fundamental’ standing wave alone,6 and this energy 

6. i.e. n = 1 in the case of  the square well potential.
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level is usually referred to as the ‘ground state’. The energy levels 
corresponding to standing waves with higher frequencies are referred 
to as ‘excited states’.

Let us imagine an electron of  a particular energy, trapped in a 
square well potential. We say that it is ‘sitting in a particular energy 
level’ and its quantum wave will be associated with a single value of  n 
(see page 100). The language ‘sitting in a particular energy level’ 
reflects the fact that the electron doesn’t, in the absence of  any 
external influence, do anything. More generally, the electron could 
be described by many standing waves at once, just as the sound of  a 
guitar will be made up of  many harmonics at once. This means that 
the electron will not in general have a unique energy.

Crucially, a measurement of  the electron’s energy must always 
reveal a value equal to that associated with one of  the contributing 
standing waves. In order to compute the probability of  finding the 
electron with a particular energy, we should take the clocks associ-
ated with the specific contribution to the total wavefunction coming 
from the corresponding standing wave, square them all up and add 
them all together. The resulting number tells us the probability that 
the electron is in this particular energy state. The sum of  all such 
probabilities (one for each contributing standing wave) must add up 
to one, which reflects the fact that we will always find that the par-
ticle has an energy that corresponds to a specific standing wave.

Let’s be very clear: an electron can have several different energies 
at the same time, and this is just as weird a statement as saying that 
it has a variety of  positions. Of  course, by this stage in the book this 
ought not to be such a shock, but it is shocking to our everyday sen-
sibilities. Notice that there is a crucial difference between a trapped 
quantum particle and the standing waves in a swimming pool or on 
a guitar string. In the case of  the waves on a guitar string, the idea 
that they are quantized is not at all weird, because the actual wave 
describing the vibrating string is simultaneously composed of  many 
different standing waves, and all those waves physically contribute 
to the total energy of  the wave. Because they can be mixed together 
in any way, the actual energy of  the vibrating string can take on any 
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value at all. For an electron trapped inside an atom, however, the 
relative contribution of  each standing wave describes the probabil-
ity that the electron will be found with that particular energy. 
The  crucial difference arises because water waves are waves of  
water molecules but electron waves are most certainly not waves 
of electrons.

These deliberations have shown us that the energy of  an electron 
inside an atom is quantized. This means that the electron is simply 
unable to possess any energy intermediate between certain allowed 
values. This is just like saying that a car can travel at 10 miles per 
hour or 40 miles per hour, but at no other speeds in between. Imme-
diately, this fantastically bizarre conclusion offers us an explanation 
for why atoms do not continuously radiate light as the electron 
 spirals into the nucleus. It is because there is no way for the electron 
to constantly shed energy, bit by bit. Instead, the only way it can 
shed any energy is to lose a whole chunk in one go.

We can also relate what we have just learnt to the observed prop-
erties of  atoms, and in particular we can explain the unique colours 
of  light they emit. Figure 6.7 shows the visible light emitted from 
the simplest atom, hydrogen. The light is composed of  five distinct 
colours, a bright-red line corresponding to light with a wavelength 
of  656 nanometres, a light-blue line of  wavelength 486 nanometres, 
and three other violet lines which fade away into the ultraviolet end 
of  the spectrum. This series of  coloured lines is known as the 

Figure 6.7. The Balmer series for hydrogen: this is what happens when light from 
hydrogen gas is passed through a spectroscope.
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Balmer series, after the Swiss mathematical physicist Johann Balmer, 
who wrote down a formula able to describe them in 1885. Balmer 
had no idea why his formula worked, because quantum theory was 
yet to be discovered – he simply expressed the regularity behind the 
pattern in a simple mathematical formula. But we can do better, 
and it is all to do with the allowed quantum waves that fit inside the 
hydrogen atom.

We know that light can be thought of  as a stream of  photons, 
each of  energy E = hc/λ, where λ is the wavelength of  the light.7 
The observation that atoms only emit certain colours of  light there-
fore means that they only emit photons of  very specific energies. 
We have also learnt that an electron ‘trapped in an atom’ can only 
possess certain very specific energies. It is a small step now to explain 
the long-standing mystery of  the coloured light emitted from 
atoms: the different colours correspond to the emission of  photons 
when electrons ‘drop down’ from one allowed energy level to 
another. This idea implies that the observed photon energies should 
always correspond to differences between a pair of  allowed electron 
energies. This way of  describing the physics nicely illustrates the 
value of  expressing the state of  the electron in terms of  its allowed 
energies. If  we had instead chosen to talk about the allowed values 
of  the electron’s momentum then the quantum nature would not 
be so apparent and we would not so easily conclude that the atom 
can only emit and absorb radiation at specific wavelengths.

The particle-in-a-box model of  an atom is not accurate enough to 
allow us to compute the electron energies in a real atom, which is 
necessary to check this idea. But accurate calculations can be done 
if  we model more accurately the potential in the vicinity of  the pro-
ton that traps the electron. It is enough to say that these calculations 
confirm, without any shadow of  doubt, that this really is the origin 
of  those enigmatic spectral lines.

7. Incidentally, if  you know that E = cp for massless particles, which is a conse-
quence of  Einstein’s Theory of  Special Relativity, then E = hc/λ follows 
immediately by making using of  the de Broglie equation.
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You may have noticed that we have not explained why it is that 
the electron loses energy by emitting a photon. For the purposes of  
this chapter, we do not need an explanation. But something must 
induce the electron to leave the sanctity of  its standing wave, and 
that ‘something’ is the topic of  Chapter 10. For now, we are simply 
saying that ‘in order to explain the observed patterns of  light emit-
ted by atoms it is necessary to suppose that the light is emitted when 
an electron drops down from one energy level to another level of  
lower energy’. The allowed energy levels are determined by the 
shape of  the confining box and they vary from atom to atom because 
different atoms present a different environment within which their 
electrons are confined.

Up until now, we have made a good fist of  explaining things 
using  a very simple picture of  an atom, but it isn’t really good 
enough to pretend that electrons move around freely inside some 
confining box. They are moving around in the vicinity of  a bunch of  
protons and other electrons, and to really understand atoms we 
must now think about how to describe this environment more 
accurately.

The Atomic Box

Armed with the notion of  a potential, we can be more accurate in 
our description of  atoms. Let’s start with the simplest of  all atoms, 
a hydrogen atom. A hydrogen atom is made up of  just two particles: 
one electron and one proton. The proton is nearly 2,000 times heav-
ier than the electron, so we can assume that it is not doing much 
and just sits there, creating a potential within which the electron is 
trapped.

The proton has a positive electric charge and the electron has an 
equal and opposite negative charge. As an aside, the reason why the 
electric charges of  the proton and the electron are exactly equal and 
opposite is one of  the great mysteries of  physics. There is prob-
ably a very good reason, associated with some underlying theory of  
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subatomic particles that we have yet to discover, but, as we write 
this book, nobody knows.

What we do know is that, because opposite charges attract, the 
proton is going to tug the electron towards it and, as far as pre-
quantum physics is concerned, it could pull the electron inwards to 
arbitrarily small distances. How small would depend on the precise 
nature of  a proton; is it a hard ball or a nebulous cloud of  some-
thing? This question is irrelevant because, as we have seen, there is 
a minimum energy level that the electron can be in, determined 
(roughly speaking) by the longest wavelength quantum wave that 
will fit inside the potential generated by the proton. We’ve sketched 
the potential created by the proton in Figure 6.8. The deep ‘hole’ 
functions like the square well potential we met earlier except that 

Figure 6.8. The Coulomb potential well around a proton. The well is deepest 
where the proton is located.

potential
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the shape is not as simple. It is known as the ‘Coulomb potential’, 
because it is determined by the law describing the interaction 
between two electric charges, first written down by Charles-Augustin 
de Coulomb in 1783. The challenge is the same, however: we must 
find out what quantum waves can fit inside the potential, and these 
will determine the allowed energy levels of  the hydrogen atom.

Being blunt, we might say that the way to do this is to ‘solve 
Schrödinger’s wave equation for the Coulomb potential well’, which 
is one way to implement the clock-hopping rules. The details are 
technical, even for something as simple as a hydrogen atom, but for-
tunately we do not really learn much more than we have appreciated 
already. For that reason, we shall jump straight to the answer, and 
Figure 6.9 shows some of  the resulting standing waves for an elec-
tron in a hydrogen atom. What is shown is a map of  the probability 
to find the electron somewhere. The bright regions are where the 
electron is most likely to be. The real hydrogen atom is, of  course, 
three-dimensional, and these pictures correspond to slices through 
the centre of  the atom. The figure on the top left is the ground state 
wavefunction, and it tells us that the electron is, in this case, typic-
ally to be found around 1 × 10−10 m from the proton. The energies 
of  the standing waves increase from the top left to the bottom right. 
The scale also changes by a factor of  eight from the top left to the 
bottom right – in fact the bright region covering most of  the top-left 
picture is approximately the same size as the small bright spots in 
the centre of  the two pictures on the right. This means the electron 
is likely to be farther away from the proton when it is in the higher 
energy levels (and hence that it is more weakly bound to it). It is 
clear that these waves are not sine waves, which means they do not 
correspond to states of  definite momentum. But, as we have been 
at pains to emphasize, they do correspond to states of  definite 
energy.

The distinctive shape of  the standing waves is due to the shape of  
the well and some features are worth discussing in a little more 
detail. The most obvious feature of  the well around a proton is that 
it is spherically symmetric. This means that it looks the same no 
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matter which angle you view it from. To picture this, think of  a bas-
ketball with no markings on it: it’s a perfect sphere and it will look 
exactly the same no matter how you rotate it around. Perhaps we 
might dare to think of  an electron inside a hydrogen atom as if  it 
were trapped inside a tiny basketball? This is certainly more plaus-
ible than saying the electron is trapped in a square well and, 
remarkably, there is a similarity. Figure 6.10 shows, on the left, two 
of  the lowest-energy standing sound waves that can be produced 
within a basketball. Again we have taken a slice through the ball, 
and the air pressure within the ball varies from black to white as the 
pressure increases. On the right are two possible electron standing 

Figure 6.9. Four of  the lowest energy quantum waves describing the electron in a 
hydrogen atom. The light regions are where the electron is most likely to be 
found and the proton is in the centre. The top-right and bottom-left pictures are 
zoomed out by a factor of  4 relative to the first and the bottom-right picture 
is  zoomed out by a factor of  8 relative to the first. The first picture is around 
3 × 10−10 m across.
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waves in a hydrogen atom. The pictures are not identical, but they 
are very similar. So, it is not entirely stupid to imagine that the elec-
tron within a hydrogen atom is being trapped within something 
akin to a tiny basketball. This picture really serves to illustrate the 
wavelike behaviour of  quantum particles, and it hopefully takes 
some of  the mystery out of  things: understanding the electron in a 
hydrogen atom is not more complicated than understanding how 
the air vibrates inside a basketball.

Before we leave the hydrogen atom, we would like to say a little 
more about the potential created by the proton and how it is that 
the electron can leap from a higher energy level to a lower one with 
the emission of  a photon. We avoided any discussion of  how the 

Figure 6.10: Two of  the simplest standing sound waves inside a basketball (left) 
compared to the corresponding electron waves in a hydrogen atom (right). They 
are very similar. The top picture for hydrogen is a close-up of  the central region 
in the bottom left picture in Figure 6.9.
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proton and the electron communicate with each other, quite legiti-
mately, by introducing the idea of  a potential. This simplification 
allowed us to understand the quantization of  energy for trapped 
particles. But if  we want a serious understanding of  what’s going 
on, we should try to explain the underlying mechanism for trapping 
particles. In the case of  a particle moving in an actual box, we might 
imagine some impenetrable wall that is presumably made up of  
atoms, and the particle is prevented from passing through the wall 
by interacting with the atoms within it. A proper understanding 
of  ‘impenetrability’ comes from understanding how the particles 
interact with each other. Likewise, we said that the proton in a hydro-
gen atom ‘produces a potential’ in which the electron moves, and we 
said that the potential traps the electron in a manner analogous to the 
way a particle is trapped in a box. That too ducks the deeper issue, 
because clearly the electron interacts with the proton and it is that 
interaction which dictates how the electron is confined.

In Chapter 10 we’ll see that we need to supplement the quantum 
rules we’ve articulated so far with some new rules dealing with 
 particle interactions. At the moment, we have very simple rules: 
particles hop around, carrying imaginary clocks which wind back 
by clearly specified amounts depending on the size of  the hop. All 
hops are allowed, and so a particle can hop from A to B via an infin-
ity of  different routes. Each route delivers its own quantum clock to 
B and we must add up the clocks to determine a single resultant 
clock. That clock then tells us the chance of  actually finding the 
 particle at B. Adding interactions into the game turns out to be 
 surprisingly simple. We supplement the hopping rules with a new 
rule, stating that a particle can emit or absorb another particle. If  
there was one particle before the interaction, then there can be two 
particles afterwards; if  there were two particles before the interac-
tion, then there can be one particle afterwards. Of  course, if  we are 
going to work out the maths then we need to be more precise about 
which particles can fuse together or split apart, and we need to say 
what happens to the clock that each particle carries when it inter-
acts. This is the subject of  Chapter 10, but the implications for atoms 
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should be clear. If  there is a rule saying that an electron can interact 
by emitting a photon, then we have the possibility that the electron 
in a hydrogen atom can spit out a photon, lose energy and drop 
down to a lower energy level. It could also absorb a photon, gain 
energy and leap up to a higher energy level.

The existence of  spectral lines indicates that this is what is hap-
pening, and this process is ordinarily heavily biased one way. In 
particular, the electron can spit out a photon and lose energy at any 
time, but the only way it can gain energy and jump up to a higher 
energy level is if  there is a photon (or some other source of  energy) 
available to collide with it. In a gas of  hydrogen, such photons are 
typically few and far between, and an atom in an excited state is 
much more likely to emit a photon than absorb one. The net effect 
is that hydrogen atoms tend to de-excite, by which we mean that 
emission wins over absorption and, given time, the atom will make 
its way down to the n = 1 ground state. This is not always the case, 
because it is possible to arrange to continually excite atoms by feed-
ing them energy in a controlled way. This is the basis of  a technology 
that has become ubiquitous: the laser. The basic idea of  a laser is to 
pump energy into atoms, excite them, and collect the photons that 
are produced when the electrons drop down in energy. Those pho-
tons are very useful for reading data with high precision from the 
surface of  a CD or DVD: quantum mechanics affects our lives in 
myriad ways.

In this chapter, we have succeeded in explaining the origin of  
spectral lines using the simple idea of  quantized energy levels. It 
would seem we have a way of  thinking about atoms that works. But 
something is not quite right. We are missing one final piece of  the 
jigsaw, without which we have no chance of  explaining the struc-
ture of  atoms heavier than hydrogen. More prosaically, we will also 
be unable to explain why we don’t fall through the floor, and that is 
problematic for our best theory of  Nature. The insight we are look-
ing for comes from the work of  Austrian physicist Wolfgang Pauli.



7.  The Universe in a Pin-head  
(and Why We Don’t Fall Through the Floor)

That we do not fall through the floor is something of  a mystery. To 
say the floor is ‘solid’ is not very helpful, not least because Ruther-
ford discovered that atoms are almost entirely empty space. The 
situation is made even more puzzling because, as far as we can tell, 
the fundamental particles of  Nature are of  no size at all.

Dealing with particles ‘of  no size’ sounds problematic, and per-
haps impossible. But nothing we said in the previous chapters 
presupposed or required that particles have any physical extent. The 
notion of  truly point-like objects need not be wrong, even if  it flies 
in the face of  common sense – if  indeed the reader has any com-
mon sense left at this stage of  a book on quantum theory. It is, of  
course, entirely possible that a future experiment, perhaps even the 
Large Hadron Collider, will reveal that electrons and quarks are not 
infinitesimal points, but for now this is not mandated by experiment 
and there is no place for ‘size’ in the fundamental equations of  par-
ticle physics. That’s not to say that point particles don’t have their 
problems – the idea of  a finite charge compressed into an infinitely 
small volume is a thorny one – but so far the theoretical pitfalls have 
been circumvented. Perhaps the outstanding problem in fundamen-
tal physics, the development of  a quantum theory of  gravity, hints 
at finite extent, but the evidence is just not there to force physicists 
to abandon the idea of  elementary particles. To be emphatic: point-
like particles are really of  no size and to ask ‘What happens if  I split 
an electron in half ?’ makes no sense at all – there is no meaning to 
the idea of  ‘half  an electron’.

A pleasing bonus of  working with elementary fragments of  mat-
ter that have no size at all is that we don’t have any trouble with the 
idea that the entire visible Universe was once compressed into a vol-
ume the size of  a grapefruit, or even a pin-head. Mind-boggling 



117

The Universe in a Pin-head

though that may seem – it’s hard enough to imagine compressing a 
mountain to the size of  a pea, never mind a star, a galaxy, or the 
350 billion large galaxies in the observable Universe – there is abso-
lutely no reason why this shouldn’t be possible. Indeed, present-day 
theories of  the origins of  structure in the Universe deal directly 
with its properties when it was in such an astronomically dense 
state. Such theories, whilst outlandish, have a good deal of  observa-
tional evidence in their favour. In the final chapter we will meet 
objects with densities, if  not at the ‘Universe in a pin-head’ scale, 
then certainly in ‘mountain in a pea’ territory: white dwarves are 
objects with the mass of  a star squashed to the size of  the Earth, and 
neutron stars have similar masses condensed into perfect, city-sized 
spheres. These objects are not science fiction; astronomers have 
observed them and made high-precision measurements of  them, and 
quantum theory will allow us to calculate their properties and com-
pare them with the observational data. As a first step on the road to 
understanding white dwarves and neutron stars, we will need to 
address the more prosaic question with which we began this chap-
ter: if  the floor is largely empty space, why do we not fall through it?

This question has a long and venerable history, and the answer 
was not established until surprisingly recently, in 1967, in a paper by 
Freeman Dyson and Andrew Lenard. They embarked on the quest 
because a colleague had offered a bottle of  vintage champagne to 
anyone who could prove that matter shouldn’t simply collapse in on 
itself. Dyson referred to the proof  as extraordinarily complicated, 
difficult and opaque, but what they showed was that matter can 
only be stable if  electrons obey something called the Pauli Exclu-
sion Principle, one of  the most fascinating facets of  our quantum 
universe.

We shall begin with some numerology. We saw in the last chapter 
that the structure of  the simplest atom, hydrogen, can be under-
stood by searching for the allowed quantum waves that fit inside the 
proton’s potential well. This allowed us to understand, at least qual-
itatively, the distinctive spectrum of  the light emitted from hydrogen 
atoms. If  we had had the time, we could have calculated the energy 
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levels in a hydrogen atom. Every undergraduate physics student 
performs this calculation at some stage in their studies and it works 
beautifully, agreeing with the experimental data. As far as the last 
chapter was concerned, the ‘particle in a box’ simplification was 
good enough because it contains all the key points that we wanted 
to highlight. However, there is a feature of  the full calculation that 
we shall need, which comes about because the real hydrogen atom 
is extended in three dimensions. For our particle in a box example, 
we only considered one dimension and obtained a series of  energy 
levels labelled by a single number that we called n. The lowest 
energy level was labelled n = 1, the next n = 2 and so on. When the 
calculation is extended to the full three-dimensional case it turns 
out, perhaps unsurprisingly, that three numbers are needed to char-
acterize all of  the allowed energy levels. These are traditionally 
labelled n, l and m, and they are referred to as quantum numbers (in 
this chapter, m is not to be confused with the mass of  the particle). 
The quantum number n is the counterpart of  the number n for a 
particle in a box. It takes on integer values (n = 1, 2, 3, etc.) and the 
particle energies tend to increase as n increases. The possible values 
of  l and m turn out to be linked to n; l must be smaller than n 
and it can be zero, e.g. if  n n = 3 then l can be 0, 1 or 2. m can take 
on any value ranging from minus l to plus l in integer steps. So if
l l = 2  then m can be equal to −2, −1, 0, 1 or 2. We are not going 
to explain where those numbers come from, because it won’t add 
anything to our understanding. Suffice to say that the four waves 
in Figure 6.9 have (n,l) n = 3 (1,0), (2,0), (2,1) and (3,0) respectively (all 
have m m = 0).1

As we have said, the quantum number n is the main number 

1. Technically, as we mentioned in the previous chapter, because the potential 
well around the proton is spherically symmetric rather than a square box, the 
solution to the Schrödinger equation must be proportional to a spherical har-
monic. The associated angular dependence gives rise to the l  and m quantum 
numbers. The radial dependence of  the solution gives rise to the principal quan-
tum number n.
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 controlling the values of  the allowed energies of  the electrons. 
There is also a small dependence of  the allowed energies upon the 
value of  l but it only shows up in very precise measurements of  the 
emitted light. Bohr didn’t consider it when he first calculated the 
energies of  the spectral lines of  hydrogen, and his original formula 
was expressed entirely in terms of  n. There is absolutely no depend-
ence of  the electron energy upon m unless we put the hydrogen 
atom inside a magnetic field (in fact m is known as the ‘magnetic 
quantum number’), but this certainly doesn’t mean that it isn’t 
important. To see why, let’s get on with our bit of  numerology.

If  n = 1 then how many different energy levels are there? Apply-
ing the rules we stated above, l and m can both only be 0 if  n = 1, 
and so there is just the one energy level.

Now let’s do it for n = 2: l can take on two values, 0 and 1. If
l l = 1, then m can be equal to −1, 0 or +1, which is 3 more energy 
levels, making 4 in total.

For n n = 3, l can be 0, 1 or 2. For l = 2, m can be equal to −2, −1, 0, 
+1, or +2, giving 5 levels. So in total, there are 1 + 3 + 5 = 9 levels 
for n n = 3. And so on.

Remember those numbers for the first three values of  n: 1, 4  
and 9. Now take a look at Figure 7.1, which shows the first four rows 
of  the periodic table of  the chemical elements, and count how 
many elements there are in each row. Divide that number by 2, and 
you’ll get 1, 4, 4 and 9. The significance of  all this will soon be 
revealed.

Credit for arranging the chemical elements in this way is usually 

Figure 7.1. The first four rows of  the periodic table.
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given to the Russian chemist Dmitri Mendeleev, who presented it to 
the Russian Chemical Society on 6 March 1869, which was a good 
few years before anyone had worked out how to count the allowed 
energy levels in a hydrogen atom. Mendeleev arranged the ele-
ments in order of  their atomic weights, which in modern language 
corresponds to the number of  protons and neutrons inside the 
atomic nucleus, although of  course he didn’t know that at the time 
either. The ordering of  the elements actually corresponds to the 
number of  protons inside the nucleus (the number of  neutrons is 
irrelevant) but for the lighter elements this makes no difference, 
which is why Mendeleev got it right. He chose to arrange the ele-
ments in rows and columns because he noticed that certain elements 
had very similar chemical properties, even though they had differ-
ent atomic weights; the vertical columns group together such 
elements – helium, neon, argon and krypton on the far right of  the 
table are all unreactive gases. Mendeleev didn’t just get the pattern 
right, he also predicted the existence of  new elements to fill gaps in 
his table: elements 31 and 32 (gallium and germanium) were dis-
covered in 1875 and 1886. These discoveries confirmed that Mendeleev 
had uncovered something deep about the structure of  atoms, but 
nobody knew what.

What is striking is that there are two elements in row one, eight 
in rows two and three and eighteen in row four, and those numbers 
are exactly twice the numbers we just worked out by counting the 
allowed energy levels in hydrogen. Why is this?

As we have already mentioned, the elements in the periodic table 
are ordered from left to right in a row by the number of  protons in 
the nucleus, which is the same as the number of  electrons they con-
tain. Remember that all atoms are electrically neutral – the positive 
electric charges of  the protons are exactly balanced by the negative 
charges of  the electrons. There is clearly something interesting 
going on that relates the chemical properties of  the elements to the 
allowed energies that the electrons can have when they orbit around 
a nucleus.

We can imagine building up heavier atoms from lighter ones by 
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adding protons, neutrons and electrons one at a time, bearing in 
mind that whenever we add an extra proton into the nucleus we 
should add an extra electron into one of  the energy levels. The exer-
cise in numerology will generate the pattern we see in the periodic 
table if  we simply assert that each energy level can contain two and 
only two electrons. Let’s see how this works.

Hydrogen has only one electron, so that would slot into the n = 1 
level. Helium has two electrons, which would both fit into the n = 1 
level. Now the n = 1 level is full up. We must add a third electron to 
make lithium, but it will have to go into the n = 2 level. The next seven 
electrons, corresponding to the next seven elements (beryllium, boron, 
carbon, nitrogen, oxygen, fluorine and neon), can also sit in a level 
with n = 2 because that has four slots available, corresponding to
l m = 0 and l l = 1, mm = −1, 0 and +1. In that way we can account for all 
of  the elements up to neon. With neon, the n = 2 levels are all full and 
we must move to n n = 3, starting with sodium. The next eight elec-
trons, one by one, start to fill up the n n = 3 levels; first the electrons go 
into l m = 0, and then into l l = 1. That accounts for all the elements in the 
third row, up to argon. The fourth row of  the table can be explained if  
we assume that it contains all of  the remaining n n = 3 electrons (i.e. the 
ten electrons with l l = 2) and the n n = 4 electrons with lm = 0 and 1 
(which makes eight electrons), making the magic number of  eighteen 
electrons in total. We’ve sketched how the electrons fill up the energy 
levels for the heaviest element in our table, krypton (which has thirty-
six electrons) in Figure 7.2.

To elevate all of  what we just said to science rather than numer-
ology we have some explaining to do. Firstly, we need to explain why 
the chemical properties are similar for elements in the same vertical 
column. What is clear from our scheme is that the first element in 
each of  the first three rows starts off the process of  filling levels with 
increasing values of  n. Specifically, hydrogen starts things off with a 
single electron in the otherwise empty n = 1 level, lithium starts off 
the second row with a single electron in the n = 2 level and sodium 
starts the third row with a single electron in the otherwise empty  
n n = 3 level. The third row is a little odd because the n n = 3 level can 



122

The Quantum Universe

hold eighteen electrons and there are not eighteen elements in the 
third row. We can guess at what is happening though – the first eight 
electrons fill up the n n = 3 levels with lm = 0 and l l = 1, and then (for 
some reason) we should switch to the fourth row. The fourth row now 
contains the remaining ten electrons from the n n = 3 levels with l l = 2 
and the eight electrons from the n n = 4 levels with lm = 0 and l l = 1. The 
fact that the rows are not entirely correlated with the value of  n indi-
cates that the link between the chemistry and the energy-level counting 
is not as simple as we have been making out. However, it is now known 
that potassium and calcium, the first two elements in the fourth row, 
do have electrons in the n n = 4, lm = 0 level and that the next ten ele-
ments (from scandium to zinc) have their electrons in the belated  
n n = 3, l l = 2 levels.

To understand why the filling up of  the n n = 3 and l l = 2 levels 
is deferred until after calcium requires an explanation of  why the 
n n = 4, lm = 0 levels, which contain the electrons in potassium and 

l=3
l=2

n=4

n=3

n=2

n=1

8 electrons

18 electrons

8 electrons

2 electrons

l=1
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Figure 7.2. Filling the energy levels of  krypton. The dots represent electrons and 
the horizontal lines represent the energy levels, labelled by the quantum numbers 
n, l and m. We have grouped together levels with different values of  m but the 
same values of  n and l.
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 calcium, is of  lower energy than the nn = 3, l l = 2 levels. Remem-
ber,  the ‘ground state’ of  an atom will be characterized by the 
lowest-energy configuration of  the electrons, because any excited 
state can always lower its energy by the emission of  a photon. So when 
we have been saying that ‘this atom contains these electrons sitting in 
those energy levels’ we are telling you the lowest energy configuration 
of  the electrons. Of  course, we have not made any attempt to actually 
compute the energy levels, so we aren’t really in a position to rank 
them in order of  energy. In fact it is a very difficult business to calculate 
the allowed electron energies in atoms with more than two electrons, 
and even the two-electron case (helium) is not so easy. The simple idea 
that the levels are ranked in order of  increasing n comes from the 
much easier calculation for the hydrogen atom, where it is true that 
the n = 1 level has the lowest energy followed by the n = 2 levels, then 
come the n n = 3 levels and so on.

The obvious implication of  what we just said is that the elements 
on the far right of  the periodic table correspond to atoms in which a 
set of  levels has just been completely filled. In particular, for helium 
the n = 1 level is full, whilst for neon the n = 2 level is full, and for 
argon the n n = 3 level is fully populated, at least for lm = 0 and l l = 1. We 
can develop these ideas a little further and understand some import-
ant ideas in chemistry. Fortunately we aren’t writing a chemistry 
textbook, so we can be brief  and, at the risk of  dismissing an entire 
subject in a single paragraph, here we go.

The key observation is that atoms can stick together by sharing 
electrons  – we will meet this idea in the next chapter when we 
explore how a pair of  hydrogen atoms can bind to make a hydrogen 
molecule. The general rule is that elements ‘like’ to have all their 
energy levels neatly filled up. In the case of  helium, neon, argon and 
krypton, the levels are already completely full, and so they are 
‘happy’ on their own – they don’t ‘bother’ reacting with anything. 
For the other elements, they can ‘try’ to fill their levels by sharing 
electrons with other elements. Hydrogen, for example, needs one 
extra electron to fill its nn = 1 level. It can achieve this by sharing an 
electron with another hydrogen atom. In so doing, it forms a  hydrogen 
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molecule, with chemical symbol H2. This is the common form in 
which hydrogen gas exists. Carbon has four electrons out of  a pos-
sible eight in its n = 2, lm = 0 and l l = 1 levels, and would ‘like’ another 
four if  possible to fill them up. It can achieve this by binding together 
with four hydrogen atoms to form CH4, the gas known as methane. 
It can also do it by binding with two oxygen atoms, which them-
selves need two electrons to complete their nn = 2 set. This leads to 
CO2 – carbon dioxide. Oxygen could also complete its set by bind-
ing with two hydrogen atoms to make H2O – water. And so on. This 
is the basis of  chemistry: it is energetically favourable for atoms to fill 
their energy levels with electrons, even if  that is achieved by sharing 
with a neighbour. Their ‘desire’ to do this, which ultimately stems 
from the principle that things tend to their lowest energy state, is 
what drives the formation of  everything from water to DNA. In a 
world abundant in hydrogen, oxygen and carbon we now under-
stand why carbon dioxide, water and methane are so common.

This is very encouraging, but we have a final piece of  the jigsaw to 
explain: why is it that only two electrons can occupy each available 
energy level? This is a statement of  the Pauli Exclusion Principle, and 
it is clearly necessary if  everything we have been discussing is to hang 
together. Without it, the electrons would crowd together in the low-
est possible energy level around every nucleus, and there would be no 
chemistry, which is worse than it sounds, because there would be 
no molecules and therefore no life in the Universe.

The idea that two and only two electrons can occupy each energy 
level does seem quite arbitrary, and historically nobody had any idea 
why it should be the case when the idea was first proposed. The 
 initial breakthrough was made by Edmund Stoner, the son of  a 
 professional cricketer (who took eight wickets against South Africa 
in 1907, for those who read their Wisden Cricketers’ Almanack) and a 
former student of  Rutherford’s who later ran the physics depart-
ment at the University of  Leeds. In October 1924, Stoner proposed 
that there should be two electrons allowed in each (n, l, m) energy 
level. Pauli developed Stoner’s proposal and in 1925 he published a 
rule that Dirac named after him a year later. The Exclusion  Principle, 
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as first proposed by Pauli, states that no two electrons in an atom 
can share the same quantum numbers. The problem he faced was 
that it appeared that two electrons could share each set of  n, l and m 
values. Pauli got round the problem by simply introducing a new 
quantum number. This was an ansatz; he didn’t know what it repre-
sented, but it had to take on one of  only two values. Pauli wrote 
that, ‘We cannot give a more precise reason for this rule.’ Further 
insight came in 1925, in a paper by George Uhlenbeck and Samuel 
Goudsmit. Motivated by precise measurements of  atomic spectra, 
they identified Pauli’s extra quantum number with a real, physical 
property of  the electron known as ‘spin’.

The basic idea of  spin is quite simple, and dates back to 1903, well 
before quantum theory. Just a few years after its discovery, German 
physicist Max Abraham proposed that the electron was a tiny, spin-
ning electrically charged sphere. If  this were true, then electrons 
would be affected by magnetic fields, depending on the orientation 
of  the field relative to their spin axis. In their 1925 paper, which 
was  published three years after Abraham’s death, Uhlenbeck and 
Goudsmit noted that the spinning ball model couldn’t work because, 
in order to explain the observed data, the electron would have to be 
spinning faster than the speed of  light. But the spirit of  the idea was 
correct  – the electron does possess a property called spin, and it 
does affect its behaviour in a magnetic field. Its true origin, how-
ever, is a direct and rather subtle consequence of  Einstein’s Theory 
of  Special Relativity that was only properly appreciated when Paul 
Dirac wrote down an equation describing the quantum behaviour 
of  the electron in 1928. For our purposes, we shall need only acknow-
ledge that electrons do come in two types, which we refer to as ‘spin 
up’ and ‘spin down’, and the two are distinguished by having oppos-
ite values of  their angular momentum, i.e. it is like they are spinning 
in opposite directions. It’s a pity that Abraham died just a few years 
before the true nature of  electron spin was discovered, because he 
never gave up his conviction that the electron was a little sphere. 
In his obituary in 1923, Max Born and Max Von Laue wrote: ‘He 
was  an honourable opponent who fought with honest weapons 
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and who did not cover up a defeat by lamentation and nonfactual 
arguments . . . He loved his absolute ether, his field equations, his 
rigid electron, just as a youth loves his first flame, whose memory 
no later experience can extinguish.’ If  only all of  one’s opponents 
were like Abraham. 

Our goal in the remainder of  this chapter is to explain why it is that 
electrons behave in the strange way articulated by the Exclusion 
Principle. As ever, we shall make good use of  those quantum clocks.

We can attack the question by thinking about what happens 
when two electrons ‘bounce’ off  each other. Figure 7.3 illustrates a 
particular scenario where two electrons, labelled ‘1’ and ‘2’, start out 
somewhere and end up somewhere else. We have labelled the final 
locations A and B. The shaded blobs are there to remind us that we 
have not yet thought about just what happens when two electrons 
interact with each other (the details are irrelevant for the purposes 

Figure 7.3. Two electrons scattering.
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of  this discussion). All we need to imagine is that electron 1 hops 
from its starting place and ends up at the point labelled A. Likewise, 
electron 2 ends up at the point labelled B. This is what is illustrated 
in the top of  the two pictures in the figure. In fact, the argument we 
are about to present works fine even if  we ignore the possibility that 
the electrons might interact. In that case, electron 1 hops to A oblivi-
ous to the meanderings of  electron 2 and the probability of  finding 
electron 1 at A and electron 2 at B would be simply a product of  two 
independent probabilities.

For example, suppose the probability of  electron 1 hopping to 
point A is 45% and the probability of  electron 2 hopping to point B 
is 20%. The probability of  finding electron 1 at A and electron 2 at B 
is 0.45 × 0.2 = 0.09 = 9%. All we are doing here is using the logic 
that says that the chances of  tossing a coin and getting ‘tails’ and 
rolling a dice and getting a ‘six’ at the same time is one-half  multi-
plied by one-sixth, which is equal to 1/12 (i.e. just over 8%).2

As the figure illustrates, there is a second way that the two elec-
trons can end up at A and B. It is possible for electron 1 to hop to B 
whilst electron 2 ends up at A. Suppose that the chance of  finding 
electron 1 at B is 5% and the chance of  finding electron 2 at A is 20%. 
Then the probability of  finding electron 1 at B and electron 2 at A is 
0.05 × 0.2 = 0.01 = 1%.

We therefore have two ways of  getting our two electrons to 
A and B – one with a probability of  9% and one with a probability 
of  1%. The probability of  getting one electron at A and one at B, if  
we don’t care which is which, should therefore be 9% + 1% = 10%. 
Simple; but wrong.

The error is in supposing that it is possible to say which electron 
arrives at A and which one arrives at B. What if  the electrons are 

2. We will learn in Chapter 10 that accounting for the possibility that the two 
electrons interact with each other means we need to calculate the probability to 
find electron 1 at A and electron 2 at B ‘all at once’ because it does not reduce to 
a multiplication of  two independent probabilities. But that is a detail as far as this 
chapter is concerned.
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 identical to each other in every way? This might sound like an irrele-
vant question, but it isn’t. Incidentally, the suggestion that quantum 
particles might be strictly identical was first made in relation to 
Planck’s black body radiation law. A little-known physicist called 
Ladislas Natanson had pointed out, as far back as 1911, that Planck’s 
law was incompatible with the assumption that photons could be 
treated as identifiable particles. In other words, if  you could tag a 
photon and track its movements, then you wouldn’t get Planck’s law.

If  electrons 1 and 2 are absolutely identical then we must describe 
the scattering process as follows: initially there are two electrons, 
and a little later there are still two electrons located in different 
places. As we’ve learnt, quantum particles do not travel along well-
defined trajectories, and this means that there really is no way of  
tracking them, even in principle. It therefore makes no sense to 
claim electron 1 appeared at A and electron 2 at B. We simply can’t 
tell, and it is therefore meaningless to label them. This is what it 
means for two particles to be ‘identical’ in quantum theory. Where 
does this line of  reasoning take us?

Look at the figure again. For this particular process, the two 
probabilities we associated with the two diagrams (9% and 1%) are 
not wrong. They are, however, not the whole story. We know that 
quantum particles are described by clocks, so we should associate a 
clock with electron 1 arriving at A with a size equal to the square 
root of  45%. Likewise there is a clock associated with electron 2 
arriving at B and it has a size equal to the square root of  20%.

Now comes a new quantum rule – it says that we are to associate 
a single clock with the process as a whole, i.e. there is a clock whose 
size squared is equal to the probability to find electron 1 at A and elec-
tron 2 at B. In other words, there is a single clock associated with 
the upper picture in Figure 7.3. We can see that this clock must have a 
size equal to the square root of  9%, because that is the probability for 
the process to happen. But what time does it read? Answering this 
question is the domain of  Chapter 10 and it involves the idea of  clock 
multiplication. As far as this chapter is concerned, we don’t need to 
know the time, we only need the important new rule that we have 
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just stated, but which is worth repeating because it is a very general 
statement in quantum theory: we should associate a single clock with 
each possible way that an entire  process can happen. The clock we 
associate with finding a single particle at a single location is the sim-
plest illustration of  this rule, and we have managed to get this far in 
the book with it. But it is a special case, and as soon as we start to 
think about more than one particle we need to extend the rule.

This means that there is a clock of  size equal to 0.3 associated 
with the upper picture in the figure. Likewise, there is a second 
clock of  size equal to 0.1 (because 0.1 squared is 0.01 = 1%) associ-
ated with the lower picture in the figure. We therefore have two 
clocks and we want a way to use them to determine the probability 
to find an electron at A and another at B. If  the two electrons were 
distinguishable then the answer would be simple – we would just 
add together the probabilities (and not the clocks) associated with 
each possibility. We would then obtain the answer of  10%�.

But if  there is absolutely no way of  telling which of  the diagrams 
actually happened, which is the case if  the electrons are indistin-
guishable from each other, then following the logic we’ve developed 
for a single particle as it hops from place to place, we should seek 
to combine the clocks. What we are after is a generalization of  the 
rule which states that, for one particle, we should add together the 
clocks associated with all of  the different ways that the particle can 
reach a particular point in order to determine the probability to find 
the particle at that point. For a system of  many identical particles, 
we should combine together all the clocks associated with all of  the 
different ways that the particles can reach a set of  locations in order 
to determine the probability that particles will be found at those 
locations. This is important enough to merit reading a few times – it 
should be clear that this new law for combining clocks is a direct 
generalization of  the rule we have been using for a single particle. 
You may have noticed that we have been very careful with our 
wording, however. We did not say that the clocks should necessarily 
be added together – we said that they should be combined together. 
There is a good reason for our caution.
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The obvious thing to do would be to add the clocks together. But 
before leaping in we should ask whether there is a good reason why 
this is correct. This is a nice example of  not taking things for granted 
in physics – exploring our assumptions often leads to new insights, 
as it will do in this instance. Let’s take a step back, and think of  
the most general thing we could imagine. This would be to allow 
for the possibility of  giving one of  the clocks a turn or a shrink (or 
expansion) before we add them. Let’s explore this possibility in 
more detail.

What we are doing is saying, ‘I have two clocks and I want to 
combine them to make a single clock, so that I can use that to tell 
me what the probability is for the two electrons to be found at A 
and B. How should I combine them?’ We are not pre-empting the 
answer, because we want to understand if  adding clocks together 
really is the rule we should use. It turns out that we do not have 
much freedom at all, and simply adding clocks is, intriguingly, one 
of  only two possibilities.

To streamline the discussion, let’s refer to the clock correspond-
ing to particle 1 hopping to A and particle 2 hopping to B as clock 1. 
This is the clock associated with the upper picture in Figure 7.3. 
Clock 2 corresponds to the other option, where particle 1 hops to B 
instead. Here is an important realization: if  we give clock 1 a turn 
before adding it to clock 2, then the final probability we calculate 
must be the same as if  we choose to give clock 2 the same turn 
before adding it to clock 1.

To see this, notice that swapping the labels A and B around in our 
diagrams clearly cannot change anything. It is just a different way 
of  describing the same process. But swapping A and B around swaps 
the diagrams in Figure 7.3 around too. This means that if  we decide 
to wind clock 1 (corresponding to the upper picture) before adding 
it to clock 2, then this must correspond precisely to winding the 
clock 2 before adding it to clock 1, after we’ve swapped labels. This 
piece of  logic is crucial, so it’s worth hammering home. Because we 
have assumed that there is no way of  telling the difference between 
the two particles, then we are allowed to swap the labels around. 
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This implies that a turn on clock 1 must give the same answer as 
when we apply the same turn to clock 2, because there is no way of  
telling the clocks apart.

This is not a benign observation – it has a very important conse-
quence, because there are only two possible ways of  playing around 
with the winding and shrinking of  clocks before adding them 
together that will deliver a final clock with the property that it does 
not depend upon which of  the original clocks gets the treatment.

This is illustrated in Figure 7.4. The top half  of  the figure illus-
trates that, if  we wind clock 1 by 90 degrees and add it to clock 2 
then the resultant clock is not of  the same size as the resultant we 
would get if  we instead wound clock 2 by 90 degrees and add it to 
clock 1. We can see this because, if  we first wind clock 1, the new 
hand, represented by the dotted arrow, points in the opposite direc-
tion to clock 2’s hand, and therefore partly cancels it out. Winding 
clock 2 instead leaves its hand pointing in the same direction as 
clock 1’s, and now the hands will add together to form a larger hand.

Figure 7.4. The upper part of  the figure illustrates that adding clocks 1 and 2 
together after winding clock 1 by 90 degrees is not the same as adding them 
together after winding clock 2 by 90 degrees. The lower part illustrates the interest-
ing possibility that we could wind one of  the clocks by 180 degrees before adding.
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It should be clear that 90 degrees is not special, and that other 
angles will also give resultant clocks that depend upon which of  
clocks 1 and 2 we decided to wind.

The obvious exception is a clock wind of  zero degrees, because 
winding clock 1 by zero degrees before adding to clock 2 is obviously 
exactly the same as winding clock 2 by zero degrees before adding to 
clock 1. This means that adding clocks together without any wind is a 
viable possibility. Similarly, winding both clocks by the same amount 
would work, but that really is just the same as the ‘no winding’ situ-
ation and corresponds simply to redefining what we call ‘12 o’clock’. 
This is tantamount to saying that we are always free to wind every 
clock around by some amount, as long as we do that to every clock. 
This will never impact on the probabilities we are trying to compute.

The lower part of  Figure 7.4 illustrates that there is, perhaps sur-
prisingly, one other way we can combine the clocks: we could turn 
one of  them through 180 degrees before adding them together. This 
does not produce exactly the same clock in the two cases but it does 
produce the same size of  clock, and that means it leads to the same 
probability to find one electron at A and a second at B.

A similar line of  reasoning rules out the possibility of  shrinking 
or expanding one of  the clocks before adding, because if  we shrink 
clock 1 by some fraction before adding to clock 2 then this will not 
usually be the same as shrinking clock 2 by that same amount before 
adding it to clock 1, and there are no exceptions to that rule.

So, we have an interesting conclusion to draw. Even though we 
started out by allowing ourselves complete freedom, we have dis-
covered that, because there is no way of  telling the particles apart, 
there are in fact only two ways we can combine the clocks: we can 
either add them or we can add them after first winding one or the 
other by 180 degrees. The truly delightful thing is that Nature 
exploits both possibilities.

For electrons, we have to incorporate the extra twist before add-
ing the clocks. For particles like photons, or Higgs bosons, we have 
to add clocks without the twist. And so it is that Nature’s particles 
come in two types: those which need the twist are called fermions 
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and those without the twist are called bosons. What determines 
whether a particular particle is a fermion or a boson? It is the spin.

The spin is, as the name suggests, a measure of  the angular 
momentum of  a particle and it is a matter of  fact that fermions 
always have a spin equal to some half-integer value3 while bosons 
always have integer spin. We say that the electron has spin-half, the 
photon has spin-one and the Higgs boson has spin-zero. We have 
been avoiding dealing with the details of  spin in this book, because 
it is a technical detail most of  the time. However, we did need the 
result that electrons can come in two types, corresponding to the two 
possible values of  their angular momentum (spin up and spin down), 
when we were discussing the periodic table. This is an example of  a 
general rule that says particles of  spin s generally come in 2s + 1 
types, e.g. spin 1/2 particles (like electrons) come in two types, spin 1 
particles come in three types and spin 0 particles come in one type. 
The relationship between the angular momentum of  a particle and 
the way we are to combine clocks is known as the spin-statistics the-
orem, and it emerges when quantum theory is formulated so that it 
is consistent with Einstein’s Theory of  Special Relativity. More spe-
cifically, it is a direct result of  making sure that the law of  cause and 
effect is not violated. Unfortunately, deriving the spin-statistics the-
orem is beyond the level of  this book – actually it is beyond the level 
of  many books. In The Feynman Lectures on Physics, Richard Feyn-
man has this to say:

We apologise for the fact that we cannot give you an elementary 
explanation. An explanation has been worked out by Pauli from 
complicated arguments of  quantum field theory and relativity. He 
has shown that the two must necessarily go together, but we have 
not been able to find a way of  reproducing his arguments at an 
elementary level. It appears to be one of  the few places in physics 
where there is a rule which can be stated very simply, but for which 
no one has found a simple and easy explanation.

3. In units of  Planck’s constant divided by 2π.
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Bearing in mind that Richard Feynman wrote this in a university-
level textbook, we must hold up our hands and concur. But the rule 
is simple, and you must take our word for it that it can be proved: 
for fermions, you have to give a twist, and for bosons you don’t. 
It turns out that the twist is the reason for the Exclusion Principle, 
and therefore for the structure of  atoms; and, after all our hard 
work, this is now something that we can explain very simply.

Imagine moving points A and B in Figure 7.3 closer and closer 
together. When they are very close together, clock 1 and clock 2 
must be of  nearly the same size and read nearly the same time. 
When A and B are right on top of  each other then the clocks must 
be identical. That should be obvious, because clock 1 corresponds to 
particle 1 ending up at point A and clock 2 is, in this special case, 
representing exactly the same thing because points A and B are on 
top of  each other. Nevertheless, we do still have two clocks, and we 
must still add them together. But here is the catch: for fermions, we 
must give one of  the clocks a twist, winding it first by 180 degrees. 
This means that the clocks will always read exactly ‘opposite’ times 
when A and B are in the same place – if  one reads 12 o’clock then the 
other will read 6 o’clock – so adding them together always gives a 
resultant clock of  zero size. That is a fascinating result, because it 
means that there is always zero chance of  finding the two electrons 
at the same place: the laws of  quantum physics are causing them to 
avoid each other. The closer they get to each other, the smaller the 
resultant clock, and the less likely that is to happen. This is one way 
to articulate Pauli’s famous principle: electrons avoid each other.

Originally, we set out to demonstrate that no two identical elec-
trons can be in the same energy level in a hydrogen atom. We have 
not quite shown this to be true yet, but the notion that electrons 
avoid each other clearly has implications for atoms and for why we 
do not fall through the floor. Now we can see that not only do the 
electrons in the atoms in our shoes push against the electrons in the 
floor because like-charges repel; they also push against each other 
because they naturally avoid each other, according to the Pauli 
Exclusion Principle. It turns out that, as Dyson and Lenard proved, 
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it is the electron avoidance that really keeps us from falling through 
the floor, and it also forces the electrons to occupy the different 
energy levels inside atoms, giving them a structure, and ultimately 
leading to the variety of  chemical elements we see in Nature. This 
is clearly a piece of  physics with very significant consequences for 
everyday life. In the final chapter of  this book, we will show how 
Pauli’s principle also plays a crucial role in preventing some stars 
from collapsing under the influence of  their own gravity.

To finish, we should explain how it is that, if  no two electrons can 
be at the same place at the same time, then it also follows that no 
two electrons in an atom can have the same quantum numbers, 
which means that they cannot have the same energy and spin. If  we 
consider two electrons of  the same spin, then we want to show that 
they cannot be in the same energy level. If  they were in the same 
energy level then necessarily each electron would be described by 
exactly the same array of  clocks distributed through space (corres-
ponding to the relevant standing wave). For each pair of  points in 
space – let’s denote them X and Y – there are then two clocks. Clock 1 
corresponds to ‘electron 1 at X’ and ‘electron 2 at Y’, whilst clock 2 
corresponds to ‘electron 1 at Y’ and ‘electron 2 at X’. We know from 
our previous deliberations that these clocks should be added 
together after winding one of  them by 6 hours in order to deduce 
the probability to find one electron at X and a second at Y. But if  the 
two electrons have the same energies, then clocks 1 and 2 must be 
identical to each other before the crucial extra wind. After the wind, 
they will read ‘opposite’ times and, as before, add together to make 
a clock of  no size. That happens for any particular locations X and 
Y, and so there is absolutely zero chance of  ever finding a pair of  
electrons in the same standing wave configuration, and therefore 
with the same energy. That, ultimately, is responsible for the stabil-
ity of  the atoms in your body.



8.  Interconnected

So far we have been paying close attention to the quantum physics of  
isolated particles and atoms. We have learnt that electrons sit inside 
atoms in states of  definite energy, known as stationary states, although 
the atom may be in a superposition of  different such states. We have 
also learnt that it is possible for an electron to make a transition from 
one energy state to another with the concurrent emission of  a photon. 
The emission of  photons in this way makes tangible the energy states 
in an atom; we see the characteristic colours of  atomic transitions 
everywhere. Our physical experience, though, is of  vast assemblies of  
atoms stuck together in clumps, and for that reason alone it is time to 
start pondering what happens when we stick atoms together.

The contemplation of  atomic clusters is going to lead us along 
a  road that will take in chemical bonding, the differences between 
 conductors and insulators and, eventually, to semiconductors. These 
interesting materials have properties that can be exploited to build tiny 
devices capable of  carrying out operations in basic logic. They are 
known as transistors, and by stringing many millions of  them together 
we can build microchips. As we shall see, the theory of  transistors is 
deeply quantum. It is difficult to see how they could have been invented 
and exploited without quantum theory, and difficult to imagine the 
modern world without them. They are a prime example of  serendip-
ity in science; the curiosity-led exploration of  Nature that we’ve spent 
so much time describing in all its counterintuitive detail, eventually led 
to a revolution in our everyday lives. The dangers in trying to classify 
and control scientific research is beautifully summarized in the words 
of  William Shockley, one of  the inventors of  the transistor and head of  
the Solid State Physics Group at Bell Telephone Laboratories:1

1. This is an excerpt from his 1956 Nobel Prize-winner’s speech.
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I would like to express some viewpoints about words often used 
to classify types of  research in physics; for example, pure, applied, 
unrestricted, fundamental, basic, academic, industrial, practical, etc. 
It seems to me that all too frequently some of  these words are used 
in a derogatory sense, on the one hand to belittle the practical objec-
tives of  producing something useful and, on the other hand, to brush 
off  the possible long-range value of  explorations into new areas 
where a useful outcome cannot be foreseen. Frequently, I have been 
asked if  an experiment I have planned is pure or applied research; to 
me it is more important to know if  the experiment will yield new and 
probably enduring knowledge about nature. If  it is likely to yield 
such knowledge, it is, in my opinion, good fundamental research; 
and this is much more important than whether the motivation is 
purely esthetic satisfaction on the part of  the experimenter on the 
one hand or the improvement of  the stability of  a high-power tran-
sistor on the other. It will take both types to confer the greatest 
benefit on mankind.

Since that comes from the inventor of  perhaps the most useful 
device since the invention of  the wheel, policy-makers and manag-
ers throughout the world would do well to pay attention. Quantum 
theory changed the world, and whatever new theories emerge from 
the cutting-edge physics being done today, they will almost certainly 
change our lives again.

As ever, we’ll start at the beginning and extend our study of  a 
universe containing just one particle to a universe of  two. Imagine, 
in particular, a simple universe containing two isolated hydrogen 
atoms; two electrons bound in orbit around two protons that are 
very far apart. In a few pages we are going to start bringing the two 
atoms closer together to see what happens, but for now we are to 
suppose that they are very distant from each other.

The Pauli Exclusion Principle says that the two electrons cannot 
be in the same quantum state, because electrons are indistinguishable 
fermions. You might at first be tempted to say that, if  the atoms are 
far apart, then the two electrons must be in very different  quantum 
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states and there is not much more to be said on the matter. But things 
are vastly more interesting than that. Imagine putting electron num-
ber 1 in atom number 1 and electron number 2 in atom number 2. 
After waiting a while it doesn’t make sense to say that ‘electron 
number 1 is still in atom number 1’. It might be in atom number 2 
now because there is always the chance that the electron did a quan-
tum hop. Remember, everything that can happen does happen, and 
electrons are free to roam the Universe from one instant to the next. 
In the language of  little clocks, even if  we started out with clocks 
describing one of  the electrons clustered only in the vicinity of  one 
of  the protons, we would be forced to introduce clocks in the vicin-
ity of  the other proton at the next instant. And even if  the orgy of  
quantum interference meant that the clocks near the other proton 
are very tiny, they would not be of  zero size, and there would always 
be a finite probability that the electron could be there. The way to 
think more clearly about the implications of  the Exclusion Principle 
is to stop thinking in terms of  two isolated atoms and think instead 
of  the system as a whole: we have two protons and two electrons 
and our task is to understand how they organize themselves. Let us 
simplify the situation by neglecting the electromagnetic interaction 
between the two electrons – this won’t be a bad approximation if  
the protons are far apart, and it doesn’t affect our argument in any 
important way.

What do we know about the allowed energies for the electrons in 
the two atoms? We don’t need to do a calculation to get a rough idea; 
we can use what we know already. For protons that are far apart 
(imagine they are many miles apart), the lowest allowed energies 
for the electrons must surely correspond to the situation where they 
are bound to the protons to make two isolated hydrogen atoms. In 
this case, we might be tempted to conclude that the lowest energy 
state for the entire two-proton, two-electron system would corres-
pond to two hydrogen atoms sitting in their lowest energy states, 
ignoring each other completely. But although this sounds right, it 
cannot be right. We must think of  the system as a whole, and just 
like an isolated hydrogen atom, this four-particle system must have 
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its own unique spectrum of  allowed electron energies. And because 
of  the Pauli principle, the electrons cannot both be in exactly the 
same energy level around each proton, blissfully ignorant of  the 
existence each other.2

It seems that we must conclude that the pair of  identical elec-
trons in two distant hydrogen atoms cannot have the same energy 
but we have also said that we expect the electrons to be in the lowest 
energy level corresponding to an idealized, perfectly isolated hydro-
gen atom. Both those things cannot be true and a little thought 
indicates that the way out of  the problem is for there to be not one 
but two energy levels for each level in an idealized, isolated hydrogen 
atom. That way we can accommodate the two electrons without 
violating the Exclusion Principle. The difference in the two energies 
must be very small indeed for atoms that are far apart, so that we 
can pretend the atoms are oblivious to each other. But really, they 
are not oblivious, because of  the tendril-like reaches of  the Pauli 
principle: if  one of  the two electrons is in one energy state then the 
other must be in the second, different energy state and this intim-
ate link between the two atoms persists regardless of  how far apart 
they are.

This logic extends to more than two atoms – if  there are twenty-
four hydrogen atoms scattered far apart across the Universe, then for 
every energy state in a single-atom universe there are now twenty-
four energy states, all taking on almost but not quite the same values. 
When an electron in one of  the atoms settles into a particular state 
it does so in full ‘knowledge’ of  the states of  each of  the other 
twenty-three electrons, regardless of  their distance away. And so, 
every electron in the Universe knows about the state of  every other 
electron. We need not stop there – protons and neutrons are fermi-
ons too, and so every proton knows about every other proton and 
every neutron knows about every other neutron. There is an intim-
acy between the particles that make up our Universe that extends 

2. For the sake of  this discussion we are ignoring the electron’s spin. What we have 
said still applies if  we imagine that it refers to two electrons of  the same spin.
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across the entire Universe. It is ephemeral in the sense that for parti-
cles that are far apart the different energies are so close to each other 
as to make no discernible difference to our daily lives.

This is one of  the weirdest-sounding conclusions we’ve been led 
to so far in the book. Saying that every atom in the Universe is con-
nected to every other atom might seem like an orifice through 
which all sorts of  holistic drivel can seep. But there is nothing here 
that we haven’t met before. Think about the square well potential 
we thought about in Chapter 6. The width of  the well determines 
the allowed spectrum of  energy levels, and as the size of  the well is 
changed, the energy level spectrum changes. The same is true here 
in that the shape of  the well inside which our electrons are sitting, 
and therefore the energy levels they are allowed to occupy, is deter-
mined by the positions of  the protons. If  there are two protons, the 
energy spectrum is determined by the position of  both of  them. And 
if  there are 1080 protons forming a universe, then the position of  
every one of  them affects the shape of  the well within which 1080 
electrons are sitting. There is only ever one set of  energy levels and 
when anything changes (e.g. an electron changes from one energy 
level to another) then everything else must instantaneously adjust 
itself  such that no two fermions are ever in the same energy level.

The idea that the electrons ‘know’ about each other instantane-
ously sounds like it has the potential to violate Einstein’s Theory of  
Relativity. Perhaps we can build some sort of  signalling apparatus 
that exploits this instantaneous communication to transmit infor-
mation at faster-than-light speeds. This apparently paradoxical feature 
of  quantum theory was first appreciated in 1935, by Einstein in col-
laboration with Boris Podolsky and Nathan Rosen; Einstein called 
it ‘spooky action at a distance’ and did not like it. It took some time 
before people realized that, despite its spookiness, it is impossible to 
exploit these long-range correlations to transfer information faster 
than the speed of  light and that means the law of  cause and effect 
can rest safe.

This decadent multiplicity of  energy levels is not just an esoteric 
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device to evade the constraints of  the Exclusion Principle. In fact, it 
is anything but esoteric because this is the physics behind chemical 
bonding. It is also the key idea in explaining why some materials 
conduct electricity whilst others do not and, without it, we would 
not understand how a transistor works. To begin our journey to the 
transistor, we are going to go back to the simplified ‘atom’ we met 
in Chapter 6, when we trapped an electron inside a potential well. 
To be sure, this simple model didn’t allow us to compute the correct 
spectrum of  energies in a hydrogen atom, but it did teach us about 
the behaviour of  a single atom and it will serve us well here too. We 
are going to use two square wells joined together to make a toy 
model of  two adjacent hydrogen atoms. We’ll think first about the 
case where there is a single electron moving in the potential created 
by two protons. The upper picture in Figure 8.1 illustrates how we’ll 
do it. The potential is flat except where it dips down to make two 
wells, which mimic the influence of  the two protons in their ability 
to trap electrons. The step in the middle helps keep the electron 
trapped either on the left or on the right, provided it is high enough. 
In the technical parlance, we say that the electron is moving in a 
double-well potential.

Our first challenge is to use this toy model to understand what 
happens when we bring two hydrogen atoms together – we will see 
that when they get close enough they bind together, to make a mol-
ecule. After that, we shall contemplate more than two atoms and 
that will allow us to appreciate what happens inside solid matter.

If  the wells are very deep, we can use the results from Chapter 6 
to determine what the lowest-lying energy states should correspond 
to. For a single electron in a single square well, the lowest energy 
state is described by a sine wave of  wavelength equal to twice the 
size of  the box. The next-to-lowest energy state is a sine wave whose 
wavelength is equal to the size of  the box, and so on. If  we put an 
electron into one side of  a double-well, and if  the well is deep 
enough, then the allowed energies must be close to those for an 
electron trapped in a single deep well, and its wavefunction should 



Figure 8.1. The double-well potential at the top and, below it, four interesting 
wavefunctions describing an electron in the potential. Only the bottom two 
 correspond to an electron of  definite energy.
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therefore look quite like a sine wave. It is to the small differences 
between a perfectly isolated hydrogen atom and a hydrogen atom in 
a distantly separated pair to which we now turn our attention.

We can safely anticipate that the top two wavefunctions drawn in 
Figure 8.1 correspond to those for a single electron when it is located 
either in the left well or the right well (remember we use ‘well’ and 
‘atom’ interchangeably). The waves are approximately sine waves, 
with a wavelength equal to twice the width of  the well. Because the 
wavefunctions are identical in shape we might say that they should 
correspond to particles with equal energies. But this can’t be right 
because, as we have already said, there must be a tiny probability 
that, no matter how deep the wells or how widely separated they 
are, the electron can hop from one to the other. We have hinted at 
this by sketching the sine waves as ‘leaking’ slightly through the 
walls of  the well, representing the fact that there is a very small 
probability to find non-zero clocks in the adjacent well.

The fact that the electron always has a finite probability of  leap-
ing from one well to the other means that the top two wavefunctions 
in Figure 8.1 cannot possibly correspond to an electron of  definite 
energy, because we know from Chapter 6 that such an electron is 
described by a standing wave whose shape does not change with 
time or, equivalently, a bunch of  clocks whose sizes never change 
with time. If, as time advances, new clocks are spawned in the ori-
ginally empty well then the shape of  the wavefunction will most 
certainly change with time. What then, does a state of  definite 
energy look like for a double well? The answer is that the states 
must be more democratic, and express an equal preference to find 
the electron in either well. This is the only way to make a standing 
wave and stop the wavefunction sloshing back and forth from one 
well to the other.

The lower two wavefunctions we’ve sketched in Figure 8.1 have 
this property. These are what the lowest-lying energy states actually 
look like. They are the only possible stationary states we can build 
that look like the ‘single-well’ wavefunctions in each individual well, 
and also describe an electron that is equally likely to be found in 
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either well. They are in fact the two energy states that we deduced 
must be present if  we are to put two electrons into orbit around two 
distant protons to make two almost identical hydrogen atoms in a 
way consistent with the Pauli principle. If  one electron is described 
by one of  these two wavefunctions, then the other electron must be 
described by the other – this is what the Pauli principle demands.3 
For deep enough wells, or if  the atoms are far enough apart, the 
two energies will be almost equal, and almost equal to the lowest 
energy of  a particle trapped in a single isolated well. We should not 
worry that one of  the wavefunctions looks partly upside-down – 
remember it is only the size of  a clock that matters when determining 
the probability to find the particle at some place. In other words, we 
could invert all the wavefunctions we’ve drawn in this book and not 
change the physical content of  anything at all. The ‘partly upside-
down’ wavefunction (labelled ‘anti-symmetric energy state’ in the 
figure) therefore still describes an equal superposition of  an electron 
trapped in the left-hand well and an electron trapped in the right-
hand well. Crucially though, the symmetric and anti-symmetric 
wavefunctions are not exactly the same (they could not be, other-
wise Pauli would be upset). To see this, we need to look at the 
behaviour of these two lowest-energy wavefunctions in the region 
between the wells.

One wavefunction is symmetric about the centre of  the two 
wells, and the other is anti-symmetric (they are labelled as such in 
the figure). By ‘symmetric’ we mean that the wave on the left is the 
mirror image of  the wave on the right. For the ‘antisymmetric’ 
wave, the wave on the left is the mirror image of  the wave on the 
right only after it has been turned upside down. The terminology is 
not very important, but what does matter is that the two waves are 
different in the region between the two wells. It is this small differ-
ence that means that they describe states with very slightly different 
energies. In fact, the symmetric wave is the one with the lower 
energy. So turning one of  the waves upside down does in fact mat-

3. Recall we have in mind two identical electrons, i.e. they have equal spin.
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ter, but only a tiny amount if  the wells are deep enough or far 
enough apart.

It can certainly be confusing to think in terms of  particles with 
definite energy because, as we have just seen, they are described by 
wavefunctions that are of  equal size in either well. This genuinely 
does mean that there is an equal chance of  finding the electron in 
either well when we look for it, even if  the wells are separated by an 
entire Universe.

How should we picture what is going on if  we actually place an 
electron into one well and a second electron into the other well? We 
said before that we expect the initially empty well to fill with clocks 
in order to represent the fact that the particle can hop from one side 
to the other. We even hinted at the answer when we said that the 
wavefunction ‘sloshes’ back and forth. To see how this works out, 
we need to notice that we can express a state localized on one of  the 
protons as the sum of  the two lowest-energy wavefunctions. We’ve 
illustrated this in Figure 8.2 but what does it mean? If  the electron is 
sat in a particular well at some time, then this implies that it does not 
actually have a unique energy. Specifically, a measurement of  its 
energy will return a value equal to one of  the two possible energies 
corresponding to the two states of  definite energy that build up the 
wavefunction. The electron is therefore in two energy states at once. 
We hope that, by this stage in the book, this is not a novel concept.

But here is the interesting thing. Because these two states are not 

Figure 8.2. Upper: an electron localized in the left well can be understood as the 
sum of  the two lowest energy states. Lower: likewise, an electron located in the 
right well can be understood as the difference between the two lowest energy states.
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of  exactly the same energy, their clocks rotate at slightly different 
rates (as discussed on page 105). This has the effect that a particle 
initially described by a wavefunction localized around one proton 
will, after a long enough time, be described by a wavefunction 
which is peaked around the other proton. We don’t intend to go 
into details, but suffice to say that this phenomenon is quite analo-
gous to the way that two sound waves of  almost the same frequency 
add together to produce a resultant wave that is at first loud (the 
two waves are in phase) and then, some time later, quiet (as the two 
waves are out of  phase). This phenomenon is known as ‘beats’. As 
the frequency of  the waves gets closer and closer, so the time inter-
val between loud and quiet increases until, when the waves are of  
exactly the same frequency, they combine to produce a pure tone. 
This will be completely familiar to any musician who, perhaps 
unknowingly, exploits this piece of  wave physics when they make 
use of  a tuning fork. The story runs in exactly the same way for the 
second electron sat in the second well. It too tends to migrate from 
one well to the other in a fashion that exactly mirrors the behaviour 
of  the first electron. Although we might start with one electron in one 
well and a second electron in the other, after waiting long enough 
the electrons will swap positions.

We are now going to exploit what we have just learnt. The really 
interesting physics happens when we start to move the atoms closer 
together. In our model, moving the atoms together corresponds to 
reducing the width of  the barrier separating the two wells. As the 
barrier gets thinner, the wavefunctions begin to merge together and 
the electron is increasingly likely to be found in the region between 
the two protons. Figure 8.3 illustrates what the four lowest-energy 
wavefunctions look like when the barrier is thin. It is interesting 
that the lowest-energy wavefunction is starting to look like the 
 lowest-energy sine wave we would get if  we had a single electron 
in a single, wide well, i.e. the two peaks merge together to produce 
a single peak (with a dimple in it). Meanwhile, the second-lowest-
energy wavefunction looks rather like the sine wave corresponding 
to the next-to-lowest energy for a single, wide well. This is what we 
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should expect, because, as the barrier between the wells gets thin-
ner, its effect diminishes and, eventually, when it has no thickness at 
all, it has no effect at all and so our electron should behave exactly 
as if  it is in a single well.

Having looked at what happens at the two extremes – the wells 
widely separated and the wells close together – we can complete the 
picture by considering how the allowed electron energies vary as we 
decrease the distance between the wells. We’ve sketched the results 
for the lowest four energy levels in Figure 8.4. Each of  the four lines 
represents one of  the four lowest energy levels, and we’ve sketched 
the corresponding wavefunctions next to them. The right-hand edge 
of  the picture shows the wavefunctions when the wells are widely 
separated (see also Figure 8.1). As we expect, the difference between 
the energy levels of  the electrons in each well are virtually indistin-
guishable. As the wells get closer together, however, the energy levels 
begin to separate (compare the wavefunctions on the left with those 
in Figure 8.3). Interestingly, the energy level corresponding to the 
anti-symmetric wavefunction increases, whilst that corresponding to 
the symmetric wavefunction decreases.

This has a profound consequence for a real system of  two pro-
tons and two electrons – that is, two hydrogen atoms. Remember 
that in reality two electrons can actually fit into the same energy 
level because they can have opposite spins. This means that they can 
both fit into the lowest (symmetric) energy level and, crucially, this 
level decreases in energy as the atoms get closer together. This 
means that it is energetically favourable for two distant atoms to 
move closer together. And this is what actually happens in Nature:4 
the symmetric wavefunction describes a system in which the elec-
trons are shared more evenly between the two protons than one 
might anticipate from the ‘far apart’ wavefunction, and because this 
‘sharing’ configuration is of  lower energy, the atoms are drawn 
towards each other. This attraction is eventually halted because the 
two protons are positively charged and as such they repel each other 

4. Providing the protons are not moving too rapidly relative to each other.



Figure 8.3: Like Figure 8.1 except that the wells are closer together. The ‘leakage’ 
into the region in between the wells increases. Unlike Figure 8.1, we also show the 
wavefunctions corresponding to the pair of  next-to-lowest energies.
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(there is also repulsion due to the fact that the electrons have equal 
charges), but this repulsion only beats the inter-atomic attraction at 
distances smaller than around 0.1 nanometres (at room tempera-
ture). The result is that a pair of  hydrogen atoms at rest will 
eventually nestle together. This pair of  nestled hydrogen atoms has 
a name: it is a hydrogen molecule.

This preference for two atoms to stick together as a result of  
sharing their electrons between them is known as a covalent bond. 
If  you look back at the top wavefunction in Figure 8.3, then this is 
roughly what the covalent bond in a hydrogen molecule looks like. 
Remember that the height of  the wave corresponds to the probabil-
ity that an electron will be found at that point.5 There is a peak above 
each well, i.e. around each proton, which informs us that each elec-
tron is still most likely to be in the vicinity of  one or other of  the 
protons. But there is also a significant chance that the electrons will 

5. This is true for standing waves, where the clock size and the projection onto the 
12 o’clock direction are proportional to each other.

Figure 8.4: The variation of  the allowed electron energies as we change the 
 distance between the wells.
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spend time between the protons. Chemists speak of  the atoms ‘shar-
ing’ electrons in a covalent bond, and this is what we are seeing, 
even in our toy model with two square wells. Beyond the hydrogen 
molecule, this tendency for atoms to share electrons is what we 
invoked when we were discussing chemical reactions on pages 123–4.

That is a very satisfying conclusion to reach. We have learnt that, 
for hydrogen atoms that are far apart, the tiny difference between 
the two lowest-lying energy states was only of  academic interest, 
although it did lead us to conclude that every electron in the Uni-
verse knows about every other, which is certainly fascinating. On the 
other hand, the two states get increasingly separated as the protons 
get closer together, and the lower of  the two eventually becomes the 
state that describes the hydrogen molecule, and that is very far from 
being of  mere academic interest, because covalent bonding is the 
reason that you are not a bunch of  atoms sloshing around in a fea-
tureless blob.

Now we can keep pulling on this intellectual thread and start to 
think about what happens when we bring more than two atoms 
together. Three is bigger than two, so let’s start there and consider 
a triple-well potential, as illustrated in Figure 8.5. As ever, we are to 
imagine that each well is at the site of  an atom. There should be 
three lowest energy states, but looking at the figure you might be 
tempted to think that there are now four energy states for every state 
of  the single well. The four states we have in mind are illustrated in 
the figure and they correspond to wavefunctions that are variously 
symmetric or anti-symmetric about the centre of  the two potential 
barriers.6 This counting must be wrong, because if  it were correct 
then one could put four identical fermions into these four states and 
the Pauli principle would be violated. To get the Pauli principle to 
work out we need just three energy states and this, of  course, is 

6. You might think there are four more wavefunctions, corresponding to the ones 
we have drawn turned upside down, but, as we have said, these are equivalent to 
the ones drawn.
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Figure 8.5. The triple well, which is our model for three atoms in a row, and the 
possible lowest-energy wavefunctions. At the bottom we illustrate how the bottom 
of  the four waves can be obtained from the other three.

= + –
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what happens. To see this, we need merely spot that we can always 
write any one of  the four wavefunctions sketched in the figure as 
a combination of  the other three. At the bottom of  the figure, we 
have illustrated how that works out in one particular case; we have 
shown how the last wavefunction can be obtained by a combination 
of  adding and subtracting the other three.

Having identified the three lowest energy states for a particle sit-
ting in the triple-well potential, we can ask what Figure 8.4 looks 
like in this case, and it should come as no surprise at all to find that 
it looks rather similar, except that what was a pair of  allowed energy 
states becomes a triplet of  allowed states.

Enough of  three atoms – we shall now swiftly move our atten-
tion to a chain of  many. This is going to be particularly interesting 
because it contains the key ideas that will allow us to explain a lot 
about what is happening inside solid matter. If  there are N wells (to 
model a chain of  N atoms) then for each energy in the single well 
there will now be N energies. If  N is something like 1023, which is 

Figure 8.6. The energy bands in a chunk of  solid matter and how they vary with 
the distance between the atoms.
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typical of  the number of  atoms in a small chunk of  solid material, 
that is an awful lot of  splitting. The result is that Figure 8.4 now 
looks something like Figure 8.6. The vertical dotted line illustrates 
that, for atoms that are separated by the corresponding distance, 
the electrons can only have certain allowed energies. That should 
be no big surprise (if  it is, then you’d better start reading the book 
again from the beginning), but what is interesting is that the allowed 
energies come in ‘bands’. The energies from A to B are allowed, but 
no other energies are allowed until we get to C, whence energies 
from C to D are allowed, and so on. The fact that there are many 
atoms in the chain means that there are very many allowed energies 
crammed into each band. So many in fact, that for a typical solid we 
can just as well suppose that the allowed energies form a smooth 
continuum in each band. This feature of  our toy model is preserved 
in real solid matter – the electrons there really do have energies that 
come grouped in bands like this, and that has important implica-
tions for what kind of  solid we are talking about. In particular, these 
bands explain why some materials (metals) conduct electricity whilst 
others (insulators) do not.

How so? Let’s begin by considering a chain of  atoms (as ever mod-
elled by a chain of  potential wells), but now suppose that each atom 
has several electrons bound to it. This, of  course, is the norm – only 
hydrogen has just the one electron bound to a single proton – and so 
we are moving from a discussion of  a chain of  hydrogen atoms to 
the more interesting case of  a chain of  heavier atoms. We should 
also remember that electrons can come in two types; spin up and 
spin down, and the Pauli principle informs us that we can drop no 
more than two electrons into each allowed energy level. It follows 
that for a chain of  atoms each containing just one electron per atom 
(i.e. hydrogen) the n = 1 energy band is half-filled. This is illus-
trated in Figure 8.7, where we have sketched the energy levels for a 
chain of  5 atoms. This means that each band contains 5 dis-
tinct  allowed energies. These 5 energy states can accommodate 
a maximum of  10 electrons, but we only have 5 to worry about so, 
in the lowest energy configuration, the chain of  atoms contains the 
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5 electrons occupying the bottom half  of  the n = 1 energy band. If  
we had 100 atoms in the chain then the n = 1 band could contain 200 
electrons, but for hydrogen, we only have 100 electrons to deal with 
and so once again the n = 1 band is half  filled when the chain of  
atoms is in its lowest energy configuration. Figure 8.7 also shows 
what happens in the case that there are 2 electrons for every atom 
(helium) or 3 electrons per atom (lithium). In the case of  helium, the 
lowest-energy configuration corresponds to a filled n = 1 band, 
whilst for lithium the n = 1 band is filled and the n = 2 band is half  
filled. It should be pretty clear that this pattern of  filled or half-filled 
continues such that atoms with an even number of  electrons always 
lead to filled bands whilst atoms with an odd number of  electrons 
always lead to half-filled bands. Whether a band is full or not is, as we 
shall very soon discover, the reason why some materials are conduc-
tors whilst others are insulators.

Let’s now imagine connecting the ends of  our atomic chain to 
the terminals of  a battery. We know from experience that if  the 
atoms form a metal then an electric current will flow. But what does 
that actually mean, and how does it emerge from our story so far? 

Figure 8.7. The way electrons occupy the lowest available energy states in a chain 
of  five atoms when each atom contains one, two or three electrons. The black 
dots denote the electrons.
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The precise action of  the battery on the atoms within the wire is, 
fortunately, something we don’t really need to understand. All we 
need to know is that connecting up the battery provides a source 
of energy that is able to kick an electron a little, and that kick is 
always in the same direction. A good question to ask is exactly how 
a battery does that. To say ‘it is because it induces an electric field 
within the wire and electric fields push electrons’ is not entirely sat-
isfying, but it will have to satisfy us as far as this book is concerned. 
Ultimately, we could appeal to the laws of  quantum electrodynam-
ics and try to work the whole thing out in terms of  electrons 
interacting with photons. But we would add absolutely nothing to 
the current discussion by doing this, so in the interests of  brevity, 
we won’t.

Imagine an electron sitting in one of  those states of  definite 
energy. We will start by assuming that the action of  the battery can 
only provide very tiny kicks to the electron. If  the electron is sat in 
a low energy state, with many other electrons above it on the energy 
ladder (we have Figure 8.7 in mind when using this language), it will 
be unable to receive the energy kick from the battery. It is blocked, 
because the energy states above it are already filled. For example, 
the battery might be capable of  kicking the electron up to an energy 
state a few rungs higher, but if  all the accessible rungs are already 
occupied then our target electron must pass up on the opportunity 
to absorb the energy because there is simply nowhere for it to go. 
Remember, the Exclusion Principle prevents it from joining the 
other electrons if  the available places are taken. The electron will be 
forced to behave as if  there is no battery connected at all. The situ-
ation is different for those electrons with the highest energies. They 
are lying close to the top of  the heap and can potentially absorb a 
tiny kick from the battery and move into a higher energy state – but 
only if  they are not sitting at the very top of  an already full band. 
Referring back to Figure 8.7, we see that the highest-energy elec-
trons will be able to absorb energy from the battery if  the atoms 
in the chain contain an odd number of  electrons. If  they contain an 
even number, then the topmost electrons still cannot go anywhere 
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because there is a big gap in their energy ladder, and they will only 
overcome this if  they are given a large enough kick.

This implies that if  the atoms in a particular solid contain an even 
number of  electrons, those electrons may well behave as if  the bat-
tery had never been connected. A current simply can’t flow because 
there is no way for its electrons to absorb energy. This is a descrip-
tion of  an insulator. The only way out of  this conclusion is if  the 
gap between the top of  the highest filled band and the bottom of  
the next empty band is sufficiently small – we shall have more to say 
about that very soon. Conversely, if  the atoms contain an odd num-
ber of  electrons then the topmost electrons are always free to absorb 
a kick from the battery. As a result they hop up into a higher energy 
level and, because the kick is always in the same direction, the net 
effect is to induce a flow of  these mobile electrons, which we recog-
nize as an electrical current. Very simplistically, therefore, we might 
conclude that, if  a solid is made up from atoms containing odd 
numbers of  electrons, then they are destined to be conductors of  
electricity.

Happily, the real world is not that simple. Diamond, a crystalline 
solid made up entirely of  carbon atoms which have six electrons, 
is an insulator. Graphite, on the other hand, which is also pure car-
bon, is a conductor. In fact, the odd/even electron rule hardly ever 
works out in practice, but that is because our ‘wells in a line’ model 
of  a solid is far too rudimentary. What is absolutely true, though, is 
that good conductors of  electricity are characterized by the fact that 
the highest-energy electrons have the headroom to leap into higher 
energy states, whilst insulators are insulators because their topmost 
electrons are blocked from accessing the higher energy states by a 
gap in their ladder of  allowed energies.

There is a further twist to this tale, and it is a twist that matters 
when we come to explaining how the current flows in a semicon-
ductor in the next chapter. Let us imagine an electron, free to roam 
around an unfilled band of  a perfect crystal. We say a crystal 
because we mean to imply that the chemical bonds (possibly cova-
lent) have acted so as to arrange the atoms in a regular pattern. Our 
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one-dimensional model of  a solid corresponds to a crystal if  all of  
the wells are equidistant and of  the same size. Connect a battery, 
and an electron will merrily hop up from one level to the next as the 
applied electric field gently nudges it. As a result, the electric cur-
rent will steadily increase as the electrons absorb more energy and 
move faster and faster. To anyone who knows anything about elec-
tricity, this should sound rather odd, because there is no sign of  
‘Ohm’s Law’, which states that the current ( I) should be fixed by 
the size of  the applied voltage (V) according to V = I × R, where R 
represents the resistance in the wire. Ohm’s Law emerges because 
as the electrons hop their way up the energy ladder they can also 
lose energy and drop all the way down again – this will only happen 
if  the atomic lattice is not perfect, either because there are impuri-
ties within the lattice (i.e. rogue atoms that are different from the 
majority) or if  the atoms are jiggling around significantly, which is 
what is guaranteed to happen at any non-zero temperature. As a 
result, the electrons spend most of  their time playing a microscopic 
game of  snakes and ladders as they climb up the energy ladder only 
to fall down again as a result of  their interactions with the less than 
perfect atomic lattice. The average effect is to produce a ‘typical’ 
electron energy and that leads to a fixed current. This typical elec-
tron energy determines how fast the electrons flow down the wire 
and that is what we mean by a current of  electricity. The resistance 
of  the wire is to be seen as a measure of  how imperfect the atomic 
lattice is through which the electrons are moving.

But that is not the twist. Even without Ohm’s Law, the current 
doesn’t just keep increasing. When electrons reach the top of  a band, 
they behave very oddly indeed, and the net effect of  this behaviour 
is to decrease the current and eventually reverse it. This is very odd: 
even though the electric field is kicking the electrons in one direc-
tion, they end up travelling in the opposite direction when they near 
the top of  a band. The explanation of  this weird effect is beyond the 
scope of  this book, so we shall just say that the role of  the positively 
charged atomic cores is the key, and they act to push the electrons 
so that they reverse direction.
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Now, as advertised, we will explore what happens when a would-
be insulator behaves like a conductor because the gap between the 
last filled band and the next, empty, band is ‘sufficiently small’. At 
this stage it is worth introducing some jargon. The last (i.e. highest-
energy) band of  energies that is completely filled with electrons is 
referred to as the ‘valence band’, and the next band up (either empty 
or half-filled in our analysis) is referred to as the ‘conduction band’. 
If  the valence and conduction bands actually overlap (and that is a 
real possibility), then there is no gap at all and a would-be insulator 
instead behaves as a conductor. What if  there is a gap but the gap is 
‘sufficiently small’? We have indicated that the electrons can receive 
energy from a battery, so we might suppose that, if  the battery is 
powerful, then it could deliver a mighty enough kick to project an 
electron sitting near to the top of  the valence band up into the con-
duction band. That is possible, but this is not where our interest lies 
because typical batteries can’t generate a big enough kick. To put 
some numbers on it, the electric field within a solid is typically of  
the order of  a few volts per metre, and we would need fields of  a few 
volts per nanometre (i.e. a billion times stronger) in order to provide 
a kick capable of  making an electron jump the electron volt7 or so 
in energy needed to leap from the valence band to the conduction 
band in a typical insulator. Much more interesting is the kick that an 
electron can receive from the atoms that make up the solid. They 
are not rigidly sitting in the same place, but rather they are jiggling 
around a little bit – the hotter the solid the more they jiggle and a 
jiggling atom can deliver far more energy to an electron than a prac-
tical battery; enough to make it leap a few electron volts in energy. 
At room temperature, it is actually very rare to hit an electron that 

7. The electron volt is a very convenient unit of  energy for discussing electrons in 
atoms and is widely used in nuclear and particle physics. It is the energy an elec-
tron would acquire if  it were accelerated through a potential difference of  1 volt. 
That definition is not important, all that matters is that it is a way of  quantifying 
energy. To get a feel for the size, the energy required to completely liberate an 
electron from the ground state of  a hydrogen atom is 13.6 electron volts.
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hard, because at 20◦C the typical thermal energies are around 1/40 
of an electron volt. But this is only an average, and there are a very 
large number of  atoms in a solid, so it does occasionally happen. 
When it does, electrons can leap from their valence band prison 
into the conduction band, where they may then absorb the tiny 
kicks from a battery and in so doing initiate a flow of  electricity.

Materials in which, at room temperature, a sufficient number of  
electrons can be lifted up from the valence to conduction band in 
this way have their own special name: they are called semiconduc-
tors. At room temperature they can carry a current of  electricity, but 
as they are cooled down, and their atoms jiggle less, so their ability 
to conduct electricity diminishes and they turn back into insulators. 
Silicon and germanium are the two classic examples of  semicon-
ductor materials and, because of  their dual nature, they can be used 
to great advantage. Indeed, it is no exaggeration to say that the tech-
nological application of  semiconductor materials revolutionized 
the world.
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In 1947, the world’s first transistor was built. Today, every year the 
world manufactures over 10,000,000,000,000,000,000, which is one 
hundred times more than the sum total of  all the grains of  rice con-
sumed every year by the world’s seven billion residents. The world’s 
first transistor computer was built in Manchester in 1953, and had 
ninety-two of  them. Today, you can buy over a hundred thousand 
transistors for the cost of  a single grain of  rice and there are around 
a billion of  them in your mobile phone. In this chapter, we are going 
to describe how a transistor works, surely the most important appli-
cation of  quantum theory.

As we saw in the previous chapter, a conductor is a conductor 
because some of  the electrons are sitting in the conduction band. As 
a result, they are quite mobile and can ‘flow down’ the wire when a 
battery is connected. The analogy with flowing water is a good one; 
the battery is causing current to flow. We can even use the ‘potential’ 
concept to capture this idea, because the battery creates a potential 
within which the conduction electrons move, and the potential is 
in a sense, ‘downhill’. So an electron in the conduction band of  a 
material ‘rolls’ down the potential created by the battery, gaining 
energy as it goes. This is another way to think about the tiny kicks 
we talked about in the last chapter – instead of  a battery inducing tiny 
kicks that accelerate the electron along the wire, we are invoking 
a classical analogy akin to water flowing down a hill. This is a good 
way to think about the conduction of  electricity by electrons, and it 
is the way we will be thinking throughout the rest of  this chapter.

In a semiconductor material like silicon, something very  interesting 
happens because the current is not only carried by electrons in the 
conduction band. The electrons in the valence band contribute to 
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the current too. To see that, take a look at Figure 9.1. The arrow 
shows an electron, originally sitting inert in the valence band, absorb-
ing some energy and being lifted up into the conduction band. 
Certainly the elevated electron is now much more mobile, but some-
thing else is mobile too  – there is now a hole left in the valence 
band, and that hole provides some wriggle room for the otherwise 
inert valence band electrons. As we have seen, connecting a battery 
to this semiconductor will cause the conduction band electron to 
hop up in energy, thereby inducing an electric current. What hap-
pens to that hole? The electric field created by the battery can cause 
an electron from some lower energy state in the valence band to 
hop into the vacant hole. The hole is filled in, but now there is a 
hole ‘deeper’ down in the valence band. When electrons in the 
valence band hop into the vacant hole, the hole moves around.

Rather than bother keeping track of  the motion of  all the elec-
trons in the almost-full valence band, we can instead decide to keep 
track of  where the hole is and forget about the electrons. That 
book-keeping convenience is the norm for those working on the 
physics of  semiconductors, and it will make our life simpler to think 
in that way too.

Figure 9.1. An electron-hole pair in a semiconductor.
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An applied electric field induces the conduction band electrons to 
flow, creating a current, and we should like to know what it does to 
the holes in the valence band. We know that the valence band elec-
trons are not free to move, because they are almost completely 
trapped by the Pauli principle but they will shuffle along under the 
influence of  the electric field and the hole moves along with them. 
This might sound counterintuitive, and if  you are having trouble 
with the idea that if  electrons in the valence band shuffle to the left 
then the hole also shuffles to the left, perhaps the following analogy 
will help. Imagine a line of  people all standing in a queue 1 metre 
apart, except that somewhere in the middle of  the line a single 
 person is missing. The people are analogous to electrons and the 
missing person is the hole. Now imagine that all the people stride 
1 metre forwards so that they end up where the person in front of  
them was standing. Obviously the gap in the line jumps 1 metre 
forwards too, and so it is with the holes. One could also imagine 
water flowing down a pipe – a small bubble in the water will move 
in the same direction as the water, and this ‘missing water’ is analo-
gous to a hole in the valence band.

But, as if  that wasn’t enough to be going on with, there is an 
important added complication; we now need to invoke the piece of  
physics that we introduced in the ‘twist’ at the end of  the last chap-
ter. If  you recall, we said that electrons moving near to the top of  a 
filled band are accelerated by an electric field in the opposite direc-
tion to electrons moving near to the bottom of  a band. This means 
that the holes, which are near the top of  the valence band, move in 
the opposite direction to the electrons, which are near the bottom 
of  the conduction band.

The bottom line is that we can picture a flow of  electrons in one 
direction and a corresponding flow of  holes in the other direction. 
A hole can be thought of  as carrying an electric charge that is 
exactly opposite to the charge of  an electron. To see this, remember 
that the material through which our electrons and holes flow is, on 
average, electrically neutral. In any ordinary region there is no net 
charge, because the charge due to the electrons cancels the positive 
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charge carried by the atomic cores. But if  we make an electron–hole 
pair by exciting an electron out of  the valence band and into the 
conduction band (as we have been discussing), then there is a free 
electron roaming around, which constitutes an excess of  negative 
charge relative to the average conditions in that region of  the mater-
ial. Likewise, the hole is a place where there is no electron and so it 
corresponds to a region where there is a net excess of  positive 
charge. The electric current is defined to be the rate at which posi-
tive charges flow,1 and so electrons contribute negatively to the 
current and the holes contribute positively, if  they are flowing in the 
same direction. If, as is the case in our semiconductor, the electrons 
and holes flow in opposite directions, then the two add together to 
produce a larger net flow of  charge and hence a larger current.

Whilst all this is a little intricate, the net effect is very straight-
forward: we are to imagine a current of  electricity through a 
semiconductor material as being representative of  the flow of  
charge, and this flow can be made up of  conduction band electrons 
moving in one direction and valence band holes moving in the 
opposite direction. This is to be contrasted with the flow of  current 
in a conductor – in that case, the current is dominated by the flow of  
a large number of  electrons in the conduction band, and the extra 
current coming from electron–hole pair production is negligible.

To understand the utility of  semiconductor materials is to ap -
preciate that the current flowing in a semiconductor is not like an 
uncontrollable flood of  electrons down a wire, as it is in a conductor. 
Instead, it is a much more delicate combination of  electron and 
hole currents and, with a little clever engineering, that delicate com-
bination can be exploited to produce tiny devices that are capable of  
exquisitely controlling the flow of  current through a circuit.

What follows is an inspiring example of  applied physics and 
engineering. The idea is to deliberately contaminate a piece of  pure 

1. This definition is purely a matter of  convention and a historical curiosity. We 
could just as well define the current to flow in the direction that the conduction 
band electrons move.
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silicon or germanium so as to induce some new available energy 
levels for the electrons. These new levels will allow us to control the 
flow of  electrons and holes through our semiconductor just as we 
might control the flow of  water through a network of  pipes using 
valves. Of  course, anyone can control the flow of  electricity through 
a wire – just pull the plug. But that is not what we are talking about – 
rather we are talking about making tiny switches that allow the 
current to be controlled dynamically within a circuit. Tiny switches 
are the building blocks of  logic gates, and logic gates are the build-
ing blocks of  microprocessors. So how does that all work out?

The left-hand part of  Figure 9.2 illustrates what happens if  a piece 
of  silicon is contaminated with phosphorous. The degree of  contamin-
ation can be controlled with precision and this is very important. 
Suppose that every now and then within a crystal of  pure silicon an 
atom is removed and replaced with a phosphorous atom. The phos-
phorous atom snuggles neatly into the spot vacated by the silicon 
atom, the only difference being that phosphorous has one more 
 electron than silicon. That extra electron is very weakly bound to its 
host atom, but it is not entirely free and so it occupies an energy 
level lying just below the conduction band. At low temperatures 
the conduction band is empty, and the extra electrons donated by 
the phosphorous atoms reside in the donor level marked in the figure. 

Figure 9.2. The new energy levels induced in a n-type semiconductor (on the left) 
and a p-type semiconductor (on the right).
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At room temperature, electron–hole pair creation in the silicon is 
very rare, and only about one electron in every trillion gets enough 
energy from the thermal vibrations of  the lattice to jump out of  the 
valence band and into the conduction band. In contrast, because the 
donor electron in phosphorous is so weakly bound to its host, it is 
very likely that it will make the small hop from the donor level into 
the conduction band. So at room temperature, for levels of  doping 
greater than one phosphorous atom for every trillion silicon atoms, 
the conduction band will be dominated by the presence of  the elec-
trons donated by the phosphorous atoms. This means it is possible 
to control very precisely the number of  mobile electrons that are 
available to conduct electricity, simply by varying the degree of  
phosphorous contamination. Because it is electrons roaming in the 
conduction band that are free to carry the current, we say that this 
type of  contaminated silicon is ‘n-type’ (‘n’ for ‘negatively charged’).

The right-hand part of  Figure 9.2 shows what happens if  instead 
we contaminate the silicon with atoms of  aluminium. Again, the 
aluminium atoms are sprinkled sparingly around among the silicon 
atoms, and again they snuggle nicely into the spaces where silicon 
atoms would otherwise be. The difference comes because alumin-
ium has one fewer electron than silicon. This introduces holes into 
the otherwise pure crystal, just as phosphorous added electrons. 
These holes are located in the vicinity of  the aluminium atoms, and 
they can be filled in by electrons hopping out of  the valence band 
of  neighbouring silicon atoms. The ‘hole-filled’ acceptor level is 
illustrated in the figure, and it sits just above the valence band 
because it is easy for a valence electron in the silicon to hop into the 
hole made by the aluminium atom. In this case, we can naturally 
regard the electric current as being propagated by the holes, and for 
that reason this kind of  contaminated silicon is known as ‘p-type’ 
(‘p’ for ‘positively charged’). As before, at room temperature, the level 
of  aluminium contamination does not need to be much more than 
one part per trillion before the current due to the motion of  the 
holes from the aluminium is dominant.

So far we have simply said that it is possible to make a lump of  
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silicon which is able to transmit a current, either by allowing elec-
trons donated by phosphorous atoms to sail along in the conduction 
band or by allowing holes donated by aluminium atoms to sail along 
in the valence band. What is the big deal?

Figure 9.3 illustrates that we are on to something because it shows 
what happens if  we join together two pieces of  silicon; one n-type 
and the other p-type. Initially, the n-type region is awash with elec-
trons from the phosphorous and the p-type region is awash with 

Figure 9.3. A junction formed by joining together a piece of  n-type and a piece of  
p-type silicon.
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holes from the aluminium. As a result, electrons from the n-type 
region drift over into the p-type region, and holes from the p-type 
region drift over into the n-type region. There is nothing mysteri-
ous about this; the electrons and holes simply meander across the 
junction between the two materials just as a drop of  ink spreads out 
in a bath of  water. But as the electrons and holes drift in opposite 
directions, they leave behind regions of  net positive charge (in the 
n-type region) and net negative charge (in the p-type region). This 
build up of  charge opposes further migration by the ‘like sign 
charges repel’ rule, until eventually there is a balance, and no fur-
ther net migration occurs.

The second of  the three pictures in Figure 9.3 illustrates how we 
might think of  this using the language of  potentials. What is shown 
is how the electric potential varies across the junction. Deep in the 
n-type region, the effect of  the junction is unimportant, and since 
the junction has settled into a state of  equilibrium, no current flows. 
That means the potential is constant inside this region. Before mov-
ing on we should once again be clear what the potential is doing for 
us: it is simply telling us what forces act on the electrons and holes. 
If  the potential is flat, then, just as a ball sitting on flat ground will 
not roll, an electron will not move.

If  the potential dips down then we might suppose that an elec-
tron placed in the vicinity of  the falling potential will ‘roll downhill’. 
Inconveniently, convention has it the other way and a downhill poten-
tial means ‘uphill’ for an electron, i.e. electrons will flow uphill. In 
other words, a falling potential acts as a barrier to an electron, and 
this is what we’ve drawn in the figure. There is a force pushing the 
electron away from the p-type region as a result of  the build up of  
negative charge that has occurred by earlier electron migration. 
This force is what prevents any further net migration of  electrons 
from the n-type to the p-type silicon. Using downhill potentials to 
represent an uphill journey for an electron is actually not as silly as 
it seems, because things now make sense from the point of  view of  
the holes, i.e. holes naturally flow downhill. So now we can also see 
that the way we drew the potential (i.e. going from the high ground 
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on the left to low ground on the right) also correctly accounts for 
the fact that holes are prevented from escaping from the p-type 
region by the step in the potential.

The third picture in the figure illustrates the flowing water ana-
logy. The electrons on the left are ready and willing to flow down 
the wire but they are prevented from doing so by a barrier. Likewise 
the holes in the p-type region are stranded on the wrong side of  the 
barrier; the water barrier and the step in the potential are just two 
different ways of  speaking about the same thing. This is how things 
are if  we simply stick together an n-type piece of  silicon and a p-type 
piece. Actually, the act of  sticking them together takes more care 
than we are suggesting – the two cannot simply be glued together, 
because then the junction will not allow the electrons and holes to 
flow freely from one region to the other.

Interesting things start to happen if  we now connect this ‘pn 
junction’ up to a battery, which allows us to raise or lower the poten-
tial barrier between the n-type and p-type regions. If  we lower the 
potential of  the p-type region then we steepen the step and make it 
even harder for the electrons and holes to flow across the junction. 
But raising the potential of  the p-type region (or lowering the poten-
tial of  the n-type region) is just like lowering the dam that was 
holding back the water. Immediately, electrons will flood from n-type 
to p-type and holes will flood in the opposite direction. In this way 
a pn-junction can be used as a diode – it can allow a current to flow, 
but only in one direction. Diodes are, however, not where our ultim-
ate interest resides.

Figure 9.4 is a sketch of  the device that changed the world – the 
transistor. It shows what happens if  we make a sandwich, with a layer 
of  p-type silicon in between two layers of  n-type silicon. Our explan-
ation of  a diode will serve us well here, because the ideas are basically 
the same. Electrons drift from the n-type regions into the p-type 
region and holes drift the other way until this diffusion is eventually 
halted by the potential steps at the junctions between the layers. In 
isolation, it is as if  there are two reservoirs of  electrons held apart by 
a barrier, and a single reservoir of  holes that sits brim-full in between.
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The interesting action occurs when we apply voltages to the 
n-type region on one side and the p-type region in the middle. 
Applying positive voltages causes the plateau on the left to rise (by 
an amount Vc) and likewise the plateau in the p-type region (by an 
amount Vb). We’ve indicated this by the solid line in the middle dia-
gram in the figure. This way of  arranging the potentials has a 
dramatic effect, because it creates a waterfall of  electrons as they 
flood over the lowered central barrier and into the n-type region on 
the left (remember, electrons flow ‘uphill’). Providing that Vc is 
larger than Vb, the flow of  electrons is one-way and the electrons 
on the left remain unable to flow across the p-type region. This all 

Figure 9.4: A transistor.
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might sound rather innocuous, but we have just described an elec-
tronic valve. By applying a voltage to the p-type region we are able 
to turn on and off  the electron current.

Now comes the finale – we are ready to recognize the full poten-
tial of  the humble transistor. In Figure 9.5 we illustrate the action of  
a transistor by once again drawing parallels with flowing water. The 
‘valve closed’ situation is entirely analogous to what happens if  no 
voltage is applied to the p-type region. Applying a voltage corre-
sponds to opening up the valve. Below the two pipes, we have also 
drawn the symbol that is often used to represent a transistor and, 
with a little imagination, it even looks a little like a valve.

What can we do with valves and pipes? The answer is that we can 

Figure 9.5. The ‘water in a pipe’ analogy with a transistor.
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build a computer and if  those pipes and valves can be made small 
enough then we can make a serious computer. Figure 9.6 illustrates 
conceptually how we can use a pipe with two valves to construct 
something called a ‘logic gate’. The pipe on the left has both valves 
open and as a result water flows out of  the bottom. The pipe in the 
middle and the pipe on the right both have one valve closed and 
obviously no water can then flow out of  the bottom. We have not 
bothered to show the fourth possibility, when both valves are closed. 
If  we were to represent the flow of  water out of  the bottom of  our 
pipes by the digit ‘1’ and the absence of  flow by the digit ‘0’, and if  
we assign the digit ‘1’ to an open valve and the digit ‘0’ to a closed 
valve, then we can summarize the action of  the four pipes (three 
drawn and one not) by the equations ‘1 AND 1 = 1’, ‘1 AND 0 = 0’, 
‘0 AND 1 = 0’ and ‘0 AND 0 = 0’. The word ‘AND’ is here a logical 
operation and it is being used in a technical way – the system of  
pipe and valves we just described is called an ‘AND gate’. The gate 
takes two inputs (the state of  the two valves) and returns a single 
output (whether water flows or not) and the only way to get a ‘1’ out 
is to feed a ‘1’ and a ‘1’ in. We hope it is clear how we can use a pair 

Figure 9.6. An ‘AND’ gate built using a water pipe and two valves (left) or a pair 
of  transistors (right). The latter is much better suited to building computers.

Vb1

Vb2

Vc



172

The Quantum Universe

of  transistors connected in series to built an AND gate – the circuit 
diagram is illustrated in the figure. We see that only if  both transis-
tors are turned on (i.e. by applying positive voltages to the p-type 
regions, Vb1Vb1 and Vb2Vb2) is it possible for a current to flow, which is just 
what is needed to implement an AND gate.

Figure 9.7 illustrates a different logic gate. This time water will 
flow out of  the bottom if  either valve is open and only if  both are 
closed will it not flow. This is called an ‘OR’ gate and, using the 
same notation as before, ‘1 OR 1 = 1’, ‘1 OR 0 = 1’, ‘0 OR 1 = 1’ and 
‘0 OR 0 = 0’. The corresponding transistor circuit is also illustrated 
in the figure and now a current will flow in all cases except when 
both transistors are switched off.

Logic gates like these are the secret behind the power of  digital 
electronic devices. Starting from these modest building blocks one 
can assemble combinations of  logic gates in order to implement 
arbitrarily sophisticated algorithms. We can imagine specifying a 
list of  inputs into some logical circuits (a series of  ‘0’s and ‘1’s), 
 sending these inputs through some sophisticated configuration 
of transistors that spits out a list of  outputs (again a series of  ‘0’s and 
‘1’s). In that way we can build circuits to perform complicated math-
ematical calculations, or to make decisions based on which keys are 
pressed on a keyboard, and feed that information to a unit which 
then displays the corresponding characters on a screen, or to trigger 

Figure 9.7. An ‘OR’ gate built using water pipes and two valves (left) or a pair of  
transistors (right).
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an alarm if  an intruder breaks into a house, or to send a stream of  
text characters down a fibre optic cable (encoded as a series of  bin-
ary digits) to the other side of  the world, or . . . in fact, anything you 
can think of, because virtually every electrical device you possess is 
crammed full of  transistors.

The potential is limitless, and we have already exploited the tran-
sistor to change the world enormously. It is probably not overstating 
things to say that the transistor is the most important invention of  
the last 100 years – the modern world is built on and shaped by semi-
conductor technologies. On a practical level, these technologies 
have saved millions of  lives – we might point in particular to the 
applications of  computing devices in hospitals, the benefits of  rapid, 
reliable and global communication systems and the uses of  com-
puters in scientific research and in controlling complex industrial 
processes.

William B. Shockley, John Bardeen and Walter H. Brattain were 
awarded the Nobel Prize in Physics in 1956 ‘for their researches on 
semiconductors and their discovery of  the transistor effect’. There 
has probably never been a Nobel Prize awarded for work that 
 directly touches so many people’s lives.



10.  Interaction

In the opening chapters we set up the framework to explain how 
tiny particles move around. They hop around, exploring the vast-
ness of  space without any prejudice, metaphorically carrying their 
tiny clocks with them as they go. When we add together the multi-
tude of  clocks corresponding to the different ways that a particle 
can arrive at some particular point in space, we obtain one definitive 
clock whose size informs us of  the chance of  finding the particle 
‘there’. From this wild, anarchic display of  quantum leaping emerges 
the more familiar properties of  everyday objects. In a sense, every 
electron, every proton and every neutron in your body is constantly 
exploring the Universe at large, and only when the sum total of  all 
those explorations is computed do we arrive at a world in which the 
atoms in your body, fortunately, tend to stay in a reasonably stable 
arrangement – at least for a century or so. What we have not yet 
addressed in any detail is the nature of  the interactions between 
particles. We have managed to make a lot of  progress without being 
specific about how particles actually talk to each other, in particular 
by exploiting the concept of  a potential. But what is a potential? If  
the world is made up solely of  particles, then surely we should be 
able to replace the vague notion that particles move ‘in the poten-
tial’ created by other particles, and speak instead about how the 
particles move and interact with each other.

The modern approach to fundamental physics, known as quan-
tum field theory, does just this by supplementing the rules for how 
particles hop around with a new set of  rules that explain how those 
particles interact with each other. These rules turn out to be no 
more complicated than the rules we’ve met so far, and it is one of  
the wonders of  modern science that, despite the intricate complex-
ity of  the natural world, there are not many of  them. ‘The eternal 
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mystery of  the world is its comprehensibility,’ Albert Einstein wrote, 
and ‘the fact that it is comprehensible is a miracle.’

Let’s start by articulating the rules of  the first quantum field theory 
to be discovered – quantum electrodynamics, or QED. The origins 
of  the theory can be traced all the way back to the 1920s, when 
Dirac in particular had an initial burst of  success in quantizing Max-
well’s electromagnetic field. We’ve already met the quantum of  the 
electromagnetic field many times in this book – it is the photon – 
but there were many problems associated with the new theory that 
were apparent but remained unsolved throughout the 1920s and 
1930s. How exactly does an electron emit a photon when it moves 
between the energy levels in an atom, for example? And, for that 
matter, what happens to a photon when it is absorbed by an elec-
tron, allowing the electron to jump to a higher energy level in the 
first place? Photons can obviously be created and destroyed in atomic 
processes, and the means by which this happens is not addressed in 
the ‘old-fashioned’ quantum theory that we have met so far in this 
book.

In the history of  science, there are a handful of  legendary gather-
ings of  scientists – meetings that certainly appear to have changed 
the course of  science. They probably didn’t, in the sense that the 
participants had usually been working on problems for years, but 
the Shelter Island Conference of  June 1947, held at the tip of  Long 
Island, New York, has a better claim than most for catalysing some-
thing special. The participant list alone is worth reciting, because it 
is short and yet a role-call of  the greats of  twentieth-century Ameri-
can physics. In alphabetical order: Hans Bethe, David Bohm, Gregory 
Breit, Karl Darrow, Herman Feshbach, Richard Feynman, Hendrik 
Kramers, Willis Lamb, Duncan MacInnes, Robert Marshak, John von 
Neumann, Arnold Nordsieck, J. Robert Oppenheimer, Abraham Pais, 
Linus Pauling, Isidor Rabi, Bruno Rossi, Julian Schwinger, Robert 
Serber, Edward Teller, George Uhlenbeck, John Hasbrouck van Vleck, 
Victor Weisskopf  and John Archibald Wheeler. The reader has met 
several of  these names in this book already, and any student of  phys-
ics probably has heard of  most of  them. The American writer Dave 
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Barry once wrote: ‘If  you had to identify, in one word, the reason 
why the human race has not achieved, and never will achieve, its full 
potential, that word would be meetings.’ This is doubtless true, but 
Shelter Island was an exception. The meeting began with a presen-
tation of  what has become known as the Lamb shift. Willis Lamb, 
using high-precision microwave techniques developed during the 
Second World War, found that the hydrogen spectrum was not, in 
fact, perfectly described by old-fashioned quantum theory. There 
was a minute shift in the observed energy levels that could not be 
accounted for using the theory we have developed so far in this book. 
It is a tiny effect, but it was a wonderful challenge to the assembled 
theorists.

We shall leave Shelter Island there, poised after Lamb’s talk, and 
turn to the theory that emerged in the months and years that fol-
lowed. In doing so we will uncover the origin of  the Lamb shift, but, 
to whet your appetite, here is a cryptic statement of  the answer: the 
proton and electron are not alone inside the hydrogen atom.

QED is the theory that explains how electrically charged parti-
cles, like electrons, interact with each other and with particles of  
light (photons). It is single-handedly capable of  explaining all  natural 
phenomena with the exception of  gravity and nuclear phenomena. 
We’ll turn our attention to nuclear phenomena later on, and in doing 
so explain why the atomic nucleus can hold together even though 
it is a bunch of  positively charged protons and zero charge neutrons 
which would fly apart in an electro-repulsive instant without some 
sub-nuclear goings-on. Pretty much everything else – certainly every-
thing you see and feel around you  – is explained at the deepest 
known level by QED. Matter, light, electricity and magnetism – it is 
all QED.

Let’s begin by exploring a system we have already met many 
times throughout the book: a world containing one single electron. 
The little circles in the ‘clock hopping’ figure on page 50 illustrate 
the various possible locations of  the electron at some instant in 
time. To deduce the likelihood of  finding it at some point X at a 
later time, our quantum rules say that we are to allow the electron 
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to hop to X from every possible starting point. Each hop delivers a 
clock to X, we add up these clocks and then we are done.

We’re going to do something now that might look a little over-
complicated at first, but of  course there is a very good reason. It’s 
going to involve a few As, Bs and Ts – in other words we’re heading 
off  into the land of  tweed jackets and chalk dust again; it won’t last 
long.

When a particle goes from a point A at time zero to a point B at 
time T, we can calculate what the clock at B will look like by wind-
ing the clock at A backwards by an amount determined by the 
distance of  B from A and the time interval, T. In shorthand, we can 
write that the clock at B is given by C(A,0)P(A,B,T) where C(A,0) 
represents the original clock at A at time zero and P(A,B,T) embod-
ies the clock-winding and shrinking rule associated with the leap 
from A to B.1 We shall refer to P(A, B, T) as the ‘propagator’ from 
A to B. Once we know the rule of  propagation from A to B, then we 
are all set and can figure out the probability to find the particle at X. 
For the example in Figure 4.2, we have lots of  starting points so we’ll 
have to propagate from every one of  them to X, and add all  the 
resulting clocks up. In our seemingly overkill notation, the resultant 
clock C(X, T)C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . .C(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., 0)P(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., X, T)C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . . C(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., 0)P(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., X, T)C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . . C(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., 
0)P(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., X, T)C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . . where C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., etc. label all the positions 
of the particle at time zero (i.e. the positions of  the little circles in 
Figure 4.2). Just to be crystal clear, C(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., 0)P(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., X, T) simply 
means ‘take a clock from point C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . . and propagate it to point X at 
time T’. Don’t be fooled into  thinking there is something tricky 
going on. All we are doing is writing down in a fancy shorthand 
something we already knew: ‘take the clock at C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . . and time zero and 
figure out by how much to turn and shrink it corresponding to the 
particle making the journey from C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . . to X at some time T later and 
then repeat that for all of  the other time-zero clocks and finally add 
all of  the clocks together according to the clock-adding rule’. We’re 

1. The propagator shrinks the clock as well, in order to make sure that the particle 
will be found with a probability of  1  somewhere in the Universe at time T.
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sure you’ll agree that this is a bit of  a mouthful, and the little bit of  
notation makes life easier.

We can certainly think of  the propagator as the embodiment of  
the clock-winding and shrinking rule. We can also think of  it as a 
clock. To clarify that bald statement, imagine if  we know for certain 
that an electron is located at point A at time T = 0, and that it is 
described by a clock of  size 1 reading 12 o’clock. We can picture the 
act of  propagation using a second clock whose size is the amount 
that the original clock needs to be shrunk and whose time encodes 
the amount of  winding we need. If  a hop from A to B requires shrink-
ing the initial clock by a factor of  5 and winding back by 2 hours, 
then the propagator P(A,B,T) could be represented by a clock 
whose size is 5/8

1/41/5 = 0.2 and which reads 10 o’clock (i.e. it is wound 
2 hours back from 12 o’clock). The clock at B is simply obtained by 
‘multiplying’ the original clock at A by the propagator clock.

As an aside for those who know about complex numbers, just 
as each of  the C(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., 0), C(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., 0) can be represented by a complex 
number so can the P(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., X, T), P(C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . ., X, T) and they are combined 
according to the mathematical rules for multiplying two complex 
numbers together. For those who do not know about complex 
numbers: it doesn’t matter because the description in terms of  
clocks is equally accurate. All we did was introduce a slightly differ-
ent way of  thinking about the clock-winding rule: we can wind and 
shrink a clock using another clock.

We are free to design our clock multiplication rule to make this 
all work: multiply the sizes of  the two clocks (1 × 0.2 = 0.2) and 
combine the times on the two clocks such that we wind the first 
clock backwards by 12 o’clock minus 10 o’clock = 2 hours. This does 
sound a little bit like we are over-elaborating, and it is clearly not 
necessary when we only have one particle to think about. But phys-
icists are lazy, and they wouldn’t go to all this trouble unless it saved 
time in the long run. This little bit of  notation proves to be a very 
useful way of  keeping track of  all the winding and shrinking when 
we come to the more interesting case where there are multiple par-
ticles in the problem – the hydrogen atom, for example.
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Regardless of  the details, there are just two key elements in our 
method of  figuring out the chances to find a lone particle some-
where in the Universe. First, we need to specify the array of  initial 
clocks which codify the information about where the particle is 
likely to be found at time zero. Second, we need to know the prop-
agator P(A,B,T), which is itself  a clock encoding the rule for 
shrinking and turning as a particle leaps from A to B. Once we know 
what the propagator looks like for any pair of  start and end points 
then we know everything there is to know, and we can confidently 
figure out the magnificently dull dynamics of  a Universe containing 
a single particle. But we should not be so disparaging, because this 
simple state of  affairs doesn’t get much more complicated when we 
add particle interactions into the game. So let’s do that now.

Figure 10.1 illustrates pictorially all of  the key ideas we want to 
discuss. It is our first encounter with Feynman diagrams, the calcu-
lational tool of  the professional particle physicist. The task we are 
charged with is to work out the probability of  finding a pair of  elec-
trons at the points X and Y at some time T. As our starting point we 
are told where the electrons are at time zero, i.e. we are told what 
their initial clock clusters look like. This is important because being 
able to answer this type of  question is tantamount to being able to 
know ‘what happens in a Universe containing two electrons’. That 
may not sound like much progress, but once we have figured this 
out the world is our oyster, because we will know how the basic 
building blocks of  Nature interact with each other.

To simplify the picture, we’ve drawn only one dimension in space, 
and time advances from left to right. This won’t affect our conclu-
sions at all. Let’s start out by describing the first of  the series of  
pictures in Figure 10.1. The little dots at T = 0 correspond to the pos-
sible locations of  the two electrons at time zero. For the purposes of  
illustration, we’ve assumed that the upper electron can be in one of  
three locations, whilst the lower is in one of  two locations (in the real 
world we must deal with electrons that can be located in an infinity of  
possible locations, but we’d run out of  ink if  we had to draw that). 
The upper electron hops to A at some later time whereupon it does 
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Figure 10.1. Some of  the ways that a pair of  electrons can scatter off  each other. 
The electrons start out on the left and always end up at the same pair of  points, 
X and Y, at time T. These graphs correspond to some of  the different ways that 
the particles can reach X and Y.
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something interesting: it emits a photon (represented by the wavy 
line). The photon then hops to B where it gets absorbed by the other 
electron. The upper electron then hops from A to X whilst the lower 
electron hops from B to Y. That is just one of  an infinite number of  
ways that our original pair of  electrons can make their way to points 
X and Y. We can associate a clock with this entire process – let’s call 
it ‘clock 1’ or C1 for short. The job of  QED is to provide us with the 
rules of  the game that will allow us to deduce this clock.

Before getting into the details, let’s sketch how this is going to pan 
out. The uppermost picture represents one of  the myriad ways that 
the initial pair of  electrons can make their way to X and Y. The other 
pictures represent some of  those ways. The crucial idea is that for 
each possible way that the electrons can get to X and Y we are to iden-
tify a quantum clock – C1 is the first in a long list of  clocks.2 When 
we’ve got all of  the clocks, we are to add them all together and obtain 
one ‘master’ clock. The size of  that clock (squared) tells us the prob-
ability of  finding the pair of  electrons at X and Y. So once again we 
are to imagine that the electrons make their way to X and Y not by 
one particular route, but rather by scattering off each other in every 
possible way. If  we look at the final few pictures in the figure, we can 
see a variety of  more elaborate ways for the electrons to scatter. The 
electrons not only exchange photons, they can emit and reabsorb a 
photon themselves, and in the final two figures something very odd 
is happening. These pictures include the scenario where a photon 
appears to emit an electron which ‘goes in a circle’ before ending up 
where it started out – we shall have more to say about that in a little 
while. For now, we can simply imagine a series of  increasingly com-
plicated diagrams corresponding to cases where the electrons emit 
and absorb huge numbers of  photons before finally ending up at X 
and Y. We’ll need to contemplate the multifarious ways that the elec-
trons can end up at X and Y, but there are two very clear rules: electrons 

2. We met this idea before, when we tackled the Pauli Exclusion Principle in 
Chapter 7.
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can only hop from place to place and emit or absorb a single photon. That’s 
really all there is to it; electrons can hop or they can branch. Closer 
inspection should reveal that none of  the pictures we have drawn 
contravenes those two rules because they never involve anything 
more complicated than a junction involving two electrons and a 
photon. We must now explain how to go about computing the 
 corresponding clocks, one for each picture in Figure 10.1.

Let’s focus on the uppermost picture and explain how to deter-
mine what the clock associated with it (clock C1) looks like. Right 
at the start of  the process, there are two electrons sitting there, and 
they will each have a clock. We should start out by multiplying them 
together according to the clock multiplication rule to get a new, single 
clock, which we will denote by the symbol C. Multiplying them makes 
sense because we should remember that the clocks are actually 
encoding probabilities, and if  we have two independent probabili-
ties then the way to combine them is to multiply them together. For 
example, the probability that two coins will both come up heads is 
1/2½ × ½ = ¼1/2C(X, T) = C(X1, 0)P(X1,X,T)+C(X2, 0)P(X2,X,T)+C(X3, 0)P(X3,X,T)+. . .1/4. Likewise, the combined clock, C, tells us the probability 
to find the two electrons at their initial locations.

The rest is just more clock multiplication. The upper electron 
hops to A, so there is a clock associated with that; let’s call it P( 1,A) 
(i.e. ‘particle 1 hops to A’). Meanwhile the lower electron hops to 
B and we have a clock for that too; call it P(2,B). Likewise there are 
two more clocks corresponding to the electrons hopping to their 
final destinations; we shall denote them by P(A,X) and P(B,Y). 
Finally, we also have a clock associated with the photon, which 
hops from A to B. Since the photon is not an electron, the rule for 
photon propagation could be different for the rule for electron 
propagation so we should use a different symbol for its clock. Let’s 
denote the clock corresponding to the photon hop L(A,B).3 Now 

3. This is a technical point because the clock-winding and -shrinking rule we have 
used throughout the book to this point does not include the effects of  Special 
Relativity. Including these, as we always must if  we are to describe photons, 
means that the clock-winding rules are different for the electron and photon.
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we simply multiply all the clocks together to produce one ‘master’ 
clock: R = C × P(1,A) × P(2,B) × P(A,X) × P(B,Y) × L(A,B),R = C × P(1, A) × P(2,B) × P(A,X) × P(B,Y) × L(A,B),R = C × P(1,A) × P(2, B) × P(A,X) × P(B,Y) × L(A,B),R = C × P(1,A) × P(2,B) × P(A, X) × P(B,Y) × L(A,B),R = C × P(1,A) × P(2,B) × P(A,X) × P(B, Y) × L(A,B),R = C × P(1,A) × P(2,B) × P(A,X) × P(B,Y) × L(A,B). We 
are very nearly done now, but there remains some additional clock 
shrinking to do because the QED rule for what happens when an 
electron emits or absorbs a photon says that we should introduce a 
shrinking factor, g. In our diagram, the upper electron emits the 
photon and the lower one absorbs it – that makes for two factors of  
g, i.e. g2. Now we really are done and our final ‘clock 1’ is obtained 
by computing C1 = g2 × R.

The shrinking factor g looks a bit arbitrary, but it has a very 
important physical interpretation. It is evidently related to the prob-
ability that an electron will emit a photon, and this encodes the 
strength of  the electromagnetic force. Somewhere in our calcula-
tion we had to introduce a connection with the real world because 
we are calculating real things and, just as Newton’s gravitational 
constant G carries all the information about the strength of  gravity, 
so g carries all the information about the strength of  the electro-
magnetic force.4

If  we were actually doing the full calculation, we’d now turn our 
attention to the second diagram, which represents another way that 
our original pair of  electrons can make their way to the same points, 
X and Y. The second diagram is very similar to the first in that the 
electrons start out from the same places, but now the photon is emit-
ted from the upper electron at a different point in space and at a 
different time and it is absorbed by the lower electron at some other 
new place and time. Otherwise things run through in precisely the 
same way and we’ll get a second clock, ‘clock 2’, denoted C2.

Then, on we’d go, repeating the entire process again and again 
for each and every possible place where the photon can be emitted 
and each and every possible place where it can be absorbed. We 
should also account for the fact that the electrons can start out from 
a variety of  different possible starting positions. The key idea is that 
each and every way of  delivering electrons to X and Y needs to be 

4. g is related to the fine structure constant: α =
g2

4π
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considered, and each is associated with its own clock. Once we have 
collected together all of  the clocks, we ‘simply’ add them all together, 
to produce one final clock whose size tells us the probability of  find-
ing one electron at X and a second at Y. Then we are finished – we 
will have figured out how two electrons interact with each other 
because we can do no better than compute probabilities.

What we have just described really is the heart of  QED, and the 
other forces in Nature admit a satisfyingly similar description. We will 
come on to those shortly, but first we have a little more to discover.

Firstly, a paragraph describing two small, but important, details. 
Number 1: we have simplified matters by ignoring the fact that elec-
trons have spin and therefore come in two types. Not only that, 
photons also have spin (they are bosons) and come in three types. 
This just makes the calculations a little more messy because we 
need to keep track of  which types of  photon and electron we are 
dealing with at every stage of  the hopping and branching. Number 2: 
if  you have been reading carefully then you may have spotted the 
minus signs in front of  a couple of  the pictures in Figure 10.1. They 
are there because we are talking about identical electrons hopping 
their way to X and Y and the two pictures with the minus sign cor-
respond to an interchange of  the electrons relative to the other 
pictures, which is to say that an electron which started out at one of  
the upper cluster of  points ends up at Y whilst the other, lower, 
electron ends up at X. And as we argued in Chapter 7, these swapped 
configurations get combined only after an extra 6-hour wind of  
their clocks – hence the minus sign.

You may also have spotted a possible flaw in our plan – there are 
an infinite number of  diagrams describing how two electrons can 
make their way to X and Y, and summing an infinite number of  clocks 
might seem onerous to say the least. Fortunately, every appearance 
of  a photon–electron branching introduces another factor of  g into 
the calculation, and this shrinks the size of  the resultant clock. This 
means that the more complicated the diagram, the smaller the 
clock it will contribute and the less important it will be when we 
come to add all the clocks up. For QED, g is quite a small number 
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(it’s around 0.3), and so the shrinking is pretty severe as the number 
of  branchings increases. Very often, it is enough to consider only 
diagrams like the first five in the figure, where there are no more 
than two branchings, and that saves lots of  hard work.

This process of  calculating the clock (known in the jargon as 
the  ‘amplitude’) for each Feynman diagram, adding all the clocks 
together and squaring the final clock to get a probability that the 
process will happen is the bread and butter of  modern particle phys-
ics. But there is a fascinating issue hiding away beneath the surface 
of  all that we have been saying – an issue that bothers some physi-
cists a lot and others not at all.

The Quantum Measurement Problem

When we add the clocks corresponding to the different Feynman 
diagrams together, we are allowing for the orgy of  quantum inter-
ference to happen. Just as for the case of  the double-slit experiment, 
where we had to consider every possible route that the particle could 
take on its journey to the screen, we must consider every possible 
way that a pair of  particles can get from their starting positions to 
their final positions. This allows us to compute the right answer 
because it allows for interference between the different diagrams. 
Only at the end of  the process, when all of  the clocks have been 
added together and all the interference is accounted for, should we 
square up the size of  the final clock to calculate the probability that 
the process will happen. Simple. But look at Figure 10.2.

What happens if  we attempt to identify what the electrons are 
doing as they hop to X and Y? The only way we can examine what is 
going on is to interact with the system according to the rules of  the 
game. In QED, this means that we must stick to the electron–photon 
branching rule, because there is nothing else. So let’s interact with 
one of  the photons that can be emitted from one or other of  the 
electrons, by detecting it using our own personal photon detector; 
our eye. Notice that we are now asking a different question of  the 
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theory: ‘What is the chance to find an electron at X and another at Y 
and also a photon in my eye?’ We know what to do to get the answer – 
we should add together all of  the clocks associated with the different 
diagrams that start out with two electrons and end up with an elec-
tron at X, another at Y, and also a photon ‘in my eye’. More precisely, 
we should talk about how the photon interacts with my eye. 
Although that might start out simple enough, it soon gets out of  
hand. For example, the photon will scatter off  an electron sitting in 
an atom in my eye, and that will trigger a chain of  events leading 
ultimately to my perception of  the photon as I become consciously 
aware of  a flash of  light in my eye. So to describe fully what is hap-
pening involves specifying the positions of  every particle in my brain 
as they respond to the arrival of  the photon. We are sailing close to 
something called the quantum measurement problem.

So far in the book we have described in some detail how to compute 
probabilities in quantum physics. By that, we mean that quantum 
theory allows us to calculate the chances of  measuring some par-
ticular outcome if  we conduct an experiment. There is no ambiguity 
in this process, provided we follow the rules of  the game and stick 
to computing the probabilities of  something happening. There is, 
however, something to feel uneasy about. Imagine an experimenter 
conducting an experiment for which there are only two outcomes, 
‘yes’ and ‘no’. Now imagine actually doing the experiment. The ex -
perimenter will record either ‘yes’ or ‘no’, and obviously not both at 
the same time. So far, so good.

Now imagine some future measurement of  something else (it 

Figure 10.2. A human eye taking a look at what is going on.
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doesn’t matter what) made by a second experimenter. Again, we’ll 
assume it is a simple experiment whose outcome is to make a ‘click’ 
or ‘no click’. The rules of  quantum physics dictate that we must 
compute the probability that the second experiment goes ‘click’ by 
summing clocks associated with all of  the possibilities that lead to 
this outcome. Now this may include the circumstance where the 
first experimenter measures ‘yes’ and the complementary case where 
they measure ‘no’. Only after summing over the two do we get the 
correct answer for the chances of  measuring a ‘click’ in the second 
experiment. Is that really right? Do we really have to entertain the 
notion that, even after the outcome of  some measurement, we should 
maintain the coherence of  the world? Or is it the case that once 
we measure ‘yes’ or ‘no’ in the first experiment then the future is 
dependent only upon that measurement? For example, in our second 
experiment it would mean that if  the first experimenter measures 
‘yes’ then the probability that the second experiment goes ‘click’ 
should be computed not from a coherent sum over the ‘yes’ and ‘no’ 
possibilities but instead by considering only the ways in which the 
world can evolve from ‘first experimenter measures yes’ to ‘second 
experiment goes click’. This will clearly give a different answer from 
the case where we are to sum over both the ‘yes’ and ‘no’ outcomes 
and we need to know which is the right thing to do if  we are to 
claim a full understanding.

The way to check which is right is to determine whether there 
is anything at all special about the measurement process itself. Does 
it change the world and stop us from adding together quantum 
amplitudes or rather is measurement part of  a vast complex web of  
possibilities that remain forever in coherent superposition? As 
human beings we might be tempted to think that measuring some-
thing now (‘yes’ or ‘no’ say) irrevocably changes the future and 
if that were true then no future measurement could occur via both 
the ‘yes’ and ‘no’ routes. But it is far from clear that this is the case 
because it seems that there is always a chance to find the Universe 
in a future state which can be arrived at via either the ‘yes’ or ‘no’ 
routes. For those states, the laws of  quantum physics, taken literally, 
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leave us with no option but to compute the probability of  their 
manifestation by summing over both the ‘yes’ and ‘no’ routes. Weird 
though this may seem, it is no more weird than the summing over 
histories that we have been performing throughout this book. All 
that is happening is that we are taking the idea so seriously that we 
are prepared to do it even at the level of  human beings and their 
actions. From this point of  view there is no ‘measurement prob-
lem’. It is only when we insist that the act of  measuring ‘yes’ or ‘no’ 
really changes the nature of  things that we run into a problem, 
because it is then incumbent upon us to explain what it is that trig-
gers the change and breaks the quantum coherence.

The approach to quantum mechanics that we have been dis-
cussing, which rejects the idea that Nature goes about choosing a 
particular version of  reality every time someone (or something) 
‘makes a measurement’, forms the basis of  what is often referred to 
as the ‘many worlds’ interpretation. It is very appealing because it is 
the logical consequence of  taking the laws that govern the behav-
iour of  elementary particles seriously enough to use them to describe 
all phenomena. But the implications are striking, for we are to 
imagine that the Universe is really a coherent superposition of  all of  
the possible things that can happen and the world as we perceive it 
(with its apparently concrete reality) arises only because we are 
fooled into thinking that coherence is lost every time we ‘measure’ 
something. In other words, my conscious perception of  the world is 
fashioned because the alternative (potentially interfering) histories 
are highly unlikely to lead to the same ‘now’ and that means quan-
tum interference is negligible.

If  measurement is not really destroying quantum coherence then, 
in a sense, we live out our lives inside one giant Feynman diagram 
and our predisposition to think that definite things are happening is 
really a consequence of  our crude perceptions of  the world. It really 
is conceivable that, at some time in our future, something can happen 
to us which requires that, in the past, we did two mutually opposite 
things. Clearly, the effect is subtle because ‘getting the job’ and ‘not 
getting the job’ makes a big difference to our lives and one cannot 
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easily imagine a scenario where they lead to identical future Uni-
verses (remember, we should only add amplitudes that lead to 
identical outcomes). So in that case, getting and not getting the job 
do not interfere much with each other and our perception of  the 
world is as if  one thing has happened and not the other. However, 
things become more ambiguous the less dramatic the two alterna-
tive scenarios are and, as we have seen, for interactions involving 
small numbers of  particles summing over the different possibilities is 
absolutely necessary. The large numbers of  particles involved in 
everyday life mean that two substantially different configurations of  
atoms at some time (e.g. getting the job or not) are simply very 
unlikely to lead to significantly interfering contributions to some 
future scenario. In turn, that means we can go ahead and pretend 
that the world has changed irrevocably as a result of  a measurement, 
even when nothing of  the sort has actually happened.

But these musings are not of  pressing importance when it comes 
to the serious business of  computing the probability that something 
will happen when we actually carry out an experiment. For that, we 
know the rules and we can implement them without any problems. 
But that happy circumstance may change one day – for now it is the 
case that questions about how our past might influence the future 
through quantum interference simply haven’t been accessible to 
experiment. The extent to which meditations on the ‘true nature’ 
of  the world (or worlds) described by quantum theory can detract 
from scientific progress is nicely encapsulated in the position taken 
by the ‘shut up and calculate’ school of  physics, which deftly dis-
misses any attempt to talk about the reality of  things.

Anti-matter

Back in this world, Figure 10.3 shows another way that two electrons 
can scatter off  each other. One of  the incoming electrons hops from 
A to X, whereupon it emits a photon. So far so good but now the 
electron heads backwards in time to Y where it absorbs another 
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photon and thence it heads into the future, where it might be even-
tually detected at C. This diagram does not contravene our rules for 
hopping and branching, because the electron goes about emitting 
and absorbing photons as prescribed by the theory. It can happen 
according to the rules and, as the title of  the book suggests, if  it can 
happen, then it does. But such behaviour does appear to violate the 
rules of  common sense, because we are entertaining the idea that 
electrons travel backwards in time. This would make for nice 
 science fiction, but violating the law of  cause and effect is no way 
to build a universe. It would also seem to place quantum theory in 
 direct conflict with Einstein’s Theory of  Special Relativity.

Remarkably, this particular kind of  time travel for subatomic par-
ticles is not forbidden, as Dirac realized in 1928. We can see a hint 
that all may not be quite as defective as it seems if  we reinterpret the 
goings-on in Figure 10.3 from our ‘forwards in time’ perspective. We 
are to track events from left to right in the figure. Let’s start at time 
T = 0, where there is a world of  just two electrons located at A and 
B. We continue with a world containing just two electrons until 
time T1, whereupon the lower electron emits a photon; between times 
T1 and T2 the world now contains two electrons plus one photon. 
At time T2, the photon dies and is replaced by an electron (which 
will end up at C) and a second particle (which will end up at X). 
We  hesitate to call the second particle an electron because it is 
‘an electron travelling back in time’. The question is, what does an 

Figure 10.3. Anti-matter . . . or an electron travelling backwards in time.
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electron that is travelling back in time look like from the point of  
view of  someone (like you) travelling forwards in time?

To answer this, let’s imagine shooting some video footage of  
an electron as it travels in the vicinity of  a magnet, as illustrated in 
Figure 10.4. Providing that the electron isn’t travelling too fast,5 it 
will typically travel around in a circle. That electrons can be deflected 

by a magnet is, as we have said before, the basic idea behind the 
 construction of  old-fashioned CRT television sets and, more glam-
orously, particle accelerators, including the Large Hadron Collider. 
Now imagine that we take the video footage and play it backwards. 
This is what ‘an electron going backwards in time’ would look like 
from our ‘forwards in time’ perspective. We’d now see the ‘back-
wards in time electron’ circle in the opposite direction as the movie 
advances. From a physicist’s perspective, the backwards in time 
video will look exactly like a forwards in time video shot using a 
particle which is in every way identical to an electron except that the 
particle appears to carry positive electric charge. Now we have the 
answer to our question: electrons travelling backwards in time 

5. This is a technical point, to ensure that the electron feels roughly the same sized 
magnetic force as it moves around.

Figure 10.4. An electron, circling near a magnet.
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would appear, to us, as ‘electrons of  positive charge’. Thus, if  electrons 
do actually travel back in time then we expect to encounter them as 
‘electrons of  positive charge’.

Such particles do exist and they are called ‘positrons’. They were 
introduced by Dirac in early 1931 to solve a problem with his quan-
tum mechanical equation for the electron – namely that the equation 
appeared to predict the existence of  particles with negative energy. 
Later, Dirac gave a wonderful insight into his way of  thinking, and 
in particular his strong conviction in the correctness of  his math-
ematics: ‘I was reconciled to the fact that the negative energy states 
could not be excluded from the mathematical theory, and so I thought, 
let us try to find a physical explanation for them.’

Just over a year later, and apparently unaware of  Dirac’s predic-
tion, Carl Anderson saw some strange tracks in his experimental 
apparatus while observing cosmic ray particles. His conclusion was 
that, ‘It seems necessary to call upon a positively charged particle 
having a mass comparable with that of  an electron.’ Once again, 
this illustrates the wonderful power of  mathematical reasoning. In 
order to make sense of  a piece of  mathematics, Dirac introduced 
the concept of  a new particle – the positron – and a few months 
later it was found, produced in high-energy cosmic ray collisions. 
The positron is our first encounter with that staple of  science 
 fiction, anti-matter.

Armed with this interpretation of  time-travelling electrons as 
positrons, we can finish off  the job of  explaining Figure 10.3. We are 
to say that when the photon reaches Y at time T2 it splits into an 
electron and a positron. Each head forwards in time until time T3 
when the positron from Y reaches X, whereupon it fuses with the 
original upper electron to produce a second photon. This photon 
propagates to time T4, when it gets absorbed by the lower electron.

This might all sound a little far fetched: anti-particles have emerged 
from our theory because we are permitting particles to travel back-
wards in time. Our hopping and branching rules allow particles to 
hop both forwards and backwards in time, and despite our possible 
prejudice that this must be disallowed, it turns out that we do not, 
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indeed must not, prevent them from doing so. Quite ironically, it 
turns out that if  we did not allow particles to hop back in time then we 
would have a violation of  the law of  cause and effect. This is odd, 
because it seems as if  things ought to be the other way around.

That things work out just fine is not an accident and it hints at a 
deeper mathematical structure. In fact, you may have got the feel-
ing on reading this chapter that the branching and hopping rules all 
seem rather arbitrary. Could we make up some new branching rules 
and tweak the hopping rules then explore the consequences? Well, 
if  we did that we would almost certainly build a bad theory – one 
that would violate the law of  cause and effect, for example. Quan-
tum Field Theory (QFT) is the name for the deeper mathematical 
structure that underpins the hopping and branching rules and it is 
remarkable for being the only way to build a quantum theory of  tiny 
particles that also respects the Theory of  Special Relativity. Armed 
with the apparatus of  QFT, the hopping and branching rules are 
fixed and we lose the freedom to choose. This is a very important 
result for those in pursuit of  fundamental laws because using ‘sym-
metry’ to remove choice creates the impression that the Universe 
simply has to be ‘like this’ and that feels like progress in understand-
ing. We used the word ‘symmetry’ here and it is appropriate, because 
Einstein’s theories can be viewed as imposing symmetry restrictions 
on the structure of  space and time. Other ‘symmetries’ further con-
strain the hopping and branching rules, and we shall briefly 
encounter those in the next chapter.

Before leaving QED, we have a final loose end to tie up. If  you 
recall, the opening talk of  the Shelter Island meeting concerned the 
Lamb shift, an anomaly in the hydrogen spectrum that could not be 
explained by the quantum theory of  Heisenberg and Schrödinger. 
Within a week of  the meeting, Hans Bethe produced a first, approxi-
mate, calculation of  the answer. Figure 10.5 illustrates the QED way 
to picture a hydrogen atom. The electromagnetic interaction that 
keeps the proton and the electron bound together can be repre-
sented by a series of  Feynman diagrams of  increasing complexity, 
just as we saw for the case of  two electrons interacting together in 
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Figure 10.1. We’ve sketched two of  the simplest possible diagrams in 
Figure 10.5. Pre-QED, the calculations of  the electron energy levels 
included only the top diagram in the figure, which captures the phys-
ics of  an electron that is trapped within the potential well generated 
by the proton. But, as we’ve discovered, there are many other things 
that can happen during the interaction. The second diagram in Fig-
ure 10.5 shows the photon briefly fluctuating into an electron–positron 
pair, and this process must also be included in a calculation of  the 
possible energy levels of  the electron. This, and many other dia-
grams, enter the calculation as small corrections to the main result.6 

6. The one first anticipated by Bohr back in 1913.

Figure 10.5. The hydrogen atom.
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Bethe correctly included the important effects from ‘one-loop’ dia-
grams, like that in the figure, and found that they slightly shift the 
energy levels and therefore the detail in the observed spectrum of  
light. His result was in accord with Lamb’s measurement. QED, 
in other words, forces us to imagine a hydrogen atom as a fizzing 
cacophony of  subatomic particles popping in and out of  existence. 
The Lamb shift was humankind’s first direct encounter with these 
ethereal quantum fluctuations.

It did not take long for two other Shelter Island attendees, Rich-
ard Feynman and Julian Schwinger, to pick up the baton and, within 
a couple of  years, QED had been developed into the theory we 
know today – the prototypical quantum field theory and exemplar 
for the soon-to-be-discovered theories describing the weak and 
strong interactions. For their efforts, Feynman, Schwinger and the 
Japanese physicist Sin-Itiro Tomonaga received the 1965 Nobel Prize 
‘for their fundamental work in quantum electrodynamics, with 
deep-ploughing consequences for the physics of  elementary parti-
cles’. It is to those deep-ploughing consequences that we now turn.



11.  Empty Space Isn’t Empty

Not everything in the world stems from the interactions between 
electrically charged particles. QED does not explain the ‘strong 
nuclear’ processes that bind quarks together inside protons and 
neutrons or the ‘weak nuclear’ processes that keep our Sun burn-
ing. We can’t write a book about the quantum theory of  Nature and 
leave out half  of  the fundamental forces, so this chapter will make 
right our omission before delving into empty space itself. As we’ll 
discover, the vacuum is an interesting place, filled with possibilities 
and obstacles for particles to navigate.

The first thing to emphasize is that the weak and strong nuclear 
forces are described by exactly the same quantum field theoretic 
approach that we have described for QED. It is in this sense that the 
work of  Feynman, Schwinger and Tomonaga had deep-ploughing 
consequences. Taken as a whole, the theory of  these three forces is 
known, rather unassumingly, as the Standard Model of  particle 
physics. As we write, the Standard Model is being tested to breaking 
point by the largest and most sophisticated machine ever assem-
bled: CERN’s Large Hadron Collider (LHC). ‘Breaking point’ is 
right because, in the absence of  something hitherto undiscovered, 
the Standard Model stops making meaningful predictions at the 
energies involved in the collisions of  almost light-speed protons at 
the LHC. In the language of  this book, the quantum rules start to 
generate clock faces with hands longer than 1, which means that 
certain processes involving the weak nuclear force are predicted to 
occur with a probability greater than 100%. This is clearly nonsense 
and it implies that the LHC is destined to discover something new. 
The challenge is to identify it among the hundreds of  millions of  
proton collisions generated every second a hundred metres below 
the foothills of  the Jura Mountains.
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The Standard Model does contain a cure to the malaise of  the 
dysfunctional probabilities and that goes by the name of  the ‘Higgs 
mechanism’. If  it is correct, then the LHC should observe one more 
particle of  Nature, the Higgs boson, and with it trigger a profound 
shift in our view of  what constitutes empty space. We’ll get to the 
Higgs mechanism later in the chapter, but first we should provide a 
short introduction to the triumphant yet creaking Standard Model.

The Standard Model of  Particle Physics

In Figure 11.1 we’ve listed all of  the known particles. These are the 
building blocks of  our Universe, as far as we know at the time of  
writing this book, but we expect that there are some more – perhaps 
we will see a Higgs boson or perhaps a new particle associated with 
the abundant but enigmatic Dark Matter that seems necessary 
to  explain the Universe at large. Or perhaps the supersymmetric 
particles anticipated by string theory or maybe the Kaluza-Klein 
excitations characteristic of  extra dimensions in space or techni-
quarks or leptoquarks or . . . theoretical speculation is rife and it is 
the duty of  those carrying out experiments at the LHC to narrow down 
the field, rule out the wrong theories and point the way forward.

Figure 11.1. The particles of  Nature.
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Everything you can see and touch; every inanimate machine, 
every living thing, every rock and every human being on planet Earth, 
every planet and every star in every one of  the 350 billion galaxies in 
the observable Universe is built out of  the particles in the first col-
umn of  four. You are an arrangement of  just three: the up and down 
quarks and the electron. The quarks make up your atomic nuclei 
and, as we’ve seen, the electrons do the chemistry. The remaining 
particle in the first column, called the electron neutrino, may be less 
familiar to you but there are around 60 billion of  them streaming 
through every square centimetre of  your body every second from 
the Sun. They mostly sail straight through you and the entire Earth, 
unimpeded, which is why you’ve never seen or felt one. But they do, 
as we will see in a moment, play a crucial role in the processes that 
power the Sun and, because of  that, they make your life possible.

These four particles form a set known as the first generation of  
matter and, together with the four fundamental forces of  Nature, 
they appear to be all that is needed to build a Universe. For reasons 
that we do not yet understand, Nature has chosen to provide us 
with two further generations – clones of  the first except that the 
particles are more massive. They are represented in the second and 
third columns in Figure 11.1. The top quark in particular is much 
more massive than the other fundamental particles. It was discovered 
at the Tevatron accelerator at Fermilab near Chicago in 1995, and its 
mass has been measured to be over 180 times the mass of  a proton. 
Why the top quark is such a monster, while being point-like in the 
same way that an electron is point-like, is a mystery. Although these 
extra generations of  matter do not play a direct role in the ordinary 
affairs of  the Universe they do seem to have been crucial players in 
the moments just after the Big Bang . . . but that is another story.

Also shown in Figure 11.1, in the column on the right, are the force-
carrying particles. Gravity is not represented in the table because 
we do not have a quantum theory of  gravity that sits comfortably 
within the framework of  the Standard Model. This isn’t to say that 
there isn’t one; string theory is an attempt to bring gravity into the 
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fold but, to date, it has met with limited success. Because gravity is 
so feeble it plays no significant role in particle physics experiments 
and for that pragmatic reason we’ll say no more about it. We learnt 
in the last chapter how the photon is responsible for mediating the 
electromagnetic force between electrically charged particles and 
that its behaviour was determined by specifying a new branching 
rule. The W and Z particles do the corresponding job for the weak 
force while the gluons mediate the strong force. The primary differ-
ences between the quantum descriptions of  the forces arise because 
the branching rules are different. It is (almost) that simple and we 
have drawn some of  the new branching rules in Figure 11.2. The 
similarity with QED makes it easy to appreciate the basics of  
the weak and strong forces; we just need to know what the branch-
ing rules are and then we can draw Feynman diagrams like we did 
for QED in the last chapter. Fortunately, changing the branching 
rules makes all the difference to the physical world.

If  this were a particle physics textbook, we might proceed to out-
line the branching rules for each of  the processes in Figure 11.2, and 
many more besides. These rules, known as the Feynman rules, would 
then allow you, or a computer program, to calculate the probability 
for some process or other, just as we outlined in the last chapter for 
QED. The rules capture something essential about the world and it 
is delightful that they can be summarized in a few simple pictures 
and rules. But this isn’t a particle physics textbook, so we’ll instead 
focus on the top-right diagram, because it is a particularly import-
ant branching rule for life on Earth. It shows an up quark branching 
into a down quark by emitting a W particle and this behaviour is 
exploited to dramatic effect within the core of  the Sun.

The Sun is a gaseous sea of  protons, neutrons, electrons and pho-
tons with the volume of  a million earths, collapsing under its own 
gravity. The vicious compression heats the solar core to 15 million 
degrees and at these temperatures the protons begin to fuse together 
to form helium nuclei. The fusion process releases energy, which 
increases the pressure on the outer layers of  the star, balancing the 
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Figure 11.2. Some of  the branching rules for the weak and strong forces.
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inward pull of  gravity. We’ll dig deeper into this precarious balan-
cing act in the epilogue, but for now we want to understand what it 
means to say that ‘the protons begin to fuse together’.

This sounds simple enough, but the precise mechanism for 
fusion in the Sun’s core was a source of  great scientific debate dur-
ing the 1920s and 30s. The British scientist Arthur Eddington was the 
first to propose that the energy source of  the Sun is nuclear fusion, 
but it was quickly pointed out that the temperatures were appar-
ently far too low for the process to occur given the then-known laws 



201

Empty Space Isn’t Empty

of  physics. Eddington stuck to his guns, however, issuing the famous 
retort: ‘The helium which we handle must have been put together 
at some time and some place. We do not argue with the critic who 
urges that the stars are not hot enough for this process; we tell him 
to go and find a hotter place.’

The problem is that when two fast-moving protons in the core of  
the Sun get close, they repel each other as a result of  the electro-
magnetic force (or, in the language of  QED, by photon exchange). 
To fuse together they need to get so close that they are effectively 
overlapping and, as Eddington and his colleagues well knew, the 
solar protons are not moving fast enough (because the Sun is not 
hot enough) to overcome their mutual electromagnetic repulsion.

The answer to this conundrum is that the W particle steps in to 
save the day. In a stroke, one of  the protons in the collision can con-
vert into a neutron by converting one of  its up quarks into a down 
quark, as specified by the branching rule in Figure 11.2. Now the 
newly formed neutron and remaining proton can get very close, 
because the neutron carries no electric charge. In the language of  
quantum field theory, this means there is no photon exchange to 
push the neutron and proton apart. Freed from the electromagnetic 
repulsion, the proton and neutron can fuse together (as a result of  
the strong force) to make a deuteron and this quickly leads to 
helium formation, releasing life-giving energy for the star. The pro-
cess is illustrated in Figure 11.3, which also indicates that the W 
particle does not stick around for very long; instead it branches into 
a positron and a neutrino – this is the source of  those very same neu-
trinos that pass through your body in such vast numbers. Eddington’s 
belligerent defence of  fusion as the power source of  the Sun was 
correct, although he could have had no inkling of  the solution. The 
all-important W particle, along with its partner the Z, was eventu-
ally discovered at CERN in the 1980s.

To conclude our brief  survey of  the Standard Model, we turn to the 
strong force. The branching rules are such that only quarks can branch 
into gluons. In fact they are much more likely to do that than they are 
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to do anything else. This predisposition to emit gluons is why the 
strong force is so named and it is the reason why gluon branching is 
able to defeat the repulsive electromagnetic force that would other-
wise cause the positively charged proton to explode. Fortunately, the 
strong force cannot reach very far. Gluons tend not to travel beyond 
around 1 femtometre (10−15 m) before they branch again. The reason 
why gluons are so short-ranging in their influence, whilst photons 
can reach across the Universe, is down to the fact that gluons can also 
branch into other gluons, as illustrated in the final two pictures in Fig-
ure 11.2. This trick of  the gluons makes the strong force very different 
from the electromagnetic force, and effectively confines its actions to 
the interior of  the atomic nucleus. Photons have no such self-branch-
ing and that is very fortunate, for if  they did you wouldn’t be able to 
see the world in front of  your eyes because the photons streaming 
towards you would scatter off those travelling across your line of  
sight. It is one of  the wonders of  life that we can see anything at all, 
and a vivid reminder that photons very rarely interact with each other.

We have not explained where all of  these new rules come from, 
nor have we explained why the Universe contains the particles that 
it does. There is a good reason for this: we don’t really know the 
answers to either of  these questions. The particles that make up our 
Universe – the electrons, neutrinos and quarks – are the primary 

Figure 11.3. Proton conversion into a neutron by weak decay, with the emission of  
a positron and a neutrino. Without this, the Sun would not burn.
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actors in the unfolding cosmic drama, but to date we have no com-
pelling way to explain why the cast should line up as it does.

What is true, however, is that once we have the list of  particles 
then the way they interact with each other, as prescribed by the 
branching rules, is something we can partially anticipate. The branch-
ing rules are not something that physicists have just conjured from 
nowhere – they are in all cases anticipated on the grounds that the 
theory describing the particle interactions should be a Quantum 
Field Theory supplemented with something called gauge sym-
metry. To discuss the origin of  the branching rules would take us 
too far outside the main line of  this book – but we do want to reiter-
ate that the essential rules are very simple: the Universe is built from 
particles that move around and interact according to a handful of  
hopping and branching rules. We can take those rules and use them 
to compute the probability that ‘something’ does happen by adding 
together a bunch of  clocks  – there being one clock for each and 
every way that the ‘something’ can happen.

The Origin of  Mass

By introducing the idea that particles can branch as well as hop we 
have entered into the domain of  Quantum Field Theory, and hop-
ping and branching is, to a large extent, all there is to it. We have, 
however, been rather negligent in our discussion of  mass, for the 
good reason that we have been saving the best until last.

Modern-day particle physics aims to provide an answer to the 
question ‘what is the origin of  mass?’ and it does so with the help of  
a beautiful and subtle piece of  physics and a new particle – new in 
the sense that we have not yet really encountered it in this book, and 
new in the sense that nobody on Earth has ever encountered one 
‘face to face’. The particle is named the Higgs boson, and the LHC 
has it firmly in its sights. At the time of  writing this book in Septem-
ber 2011, there have been tantalizing glimpses, perhaps, of  a 
Higgs-like object in the LHC data, but there are simply not enough 
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events1 to decide one way or the other. It may well be that, as you 
read this book, the situation has changed and the Higgs is a reality. 
Or it may be that the interesting signals have vanished under further 
scrutiny. The particularly exciting thing about the question of  the 
origin of  mass is that the answer is extremely interesting beyond the 
obvious desire to know what mass is. Let us now explain that rather 
cryptic and offensively constructed sentence in more detail.

When we discussed photons and electrons in QED, we intro-
duced the hopping rule for each and said that they are different – we 
used the symbol P(A,B) for the rule associated with an electron that 
hops from A to B and the symbol L(A,B) for the corresponding rule 
for a photon. It is time now to investigate why the rule is different in 
the two cases. There is a difference because electrons come in two 
different types (as we know, they ‘spin’ in one of  two different ways), 
whilst photons come in three different types, but that particular dif-
ference will not concern us here. There is another difference, however, 
because the electron has mass while the photon does not – this is 
what we want to explore.

Figure 11.4 illustrates one way that we are allowed to think about 
the propagation of  a massive particle. The figure shows a particle 
hopping from A to B in stages. It goes from A to point 1, from point 1 
to point 2 and so on until it finally hops from point 6 to B. What is 
interesting is that, when written in this way, the rule for each hop is 
the rule for a particle with zero mass, but with one important caveat: 
every time the particle changes direction we are to apply a new 
shrinking rule, with the amount of  shrinking inversely proportional 
to the mass of  the particle we are describing. This means that, at 
each kink, the clocks of  heavy particles receive less shrinking than 
the clocks of  lighter particles. It is important to emphasize that this 

1. An ‘event’ is a single proton–proton collision. Because fundamental physics is 
a  counting game (it works with probabilities) it is necessary to keep colliding 
protons in order to accumulate a sufficient number of  those very rare events in 
which a Higgs particle is produced. What constitutes a sufficient number depends 
on how skilful the experimenters are at confidently eliminating fake signals.
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isn’t an ad hoc prescription. Both the zig-zag and the shrink emerge 
directly from the Feynman rules for the propagation of  a massive 
particle, without any further assumptions.2 Figure 11.4 shows just 
one way that our heavy particle can get from A to B, i.e. via six kinks 
and six shrinkage factors. To get the final clock associated with a 
massive particle hopping from A to B we must, as always, add 
together the infinity of  clocks associated with all of  the possible 
ways that the particle can zig-zag its way from A to B. The simplest 
route is the direct one, with no kinks, but routes with huge num-
bers of  kinks need to be considered too.

For particles with zero mass the shrinkage factor associated with 
each kink is a killer, because it is infinite. In other words, we are to 
shrink the clock to zero after the first kink. The only route that mat-
ters for massless particles is therefore the direct route  – there is 
simply no clock associated with any other route. This is exactly what 
we would expect: it means that we can use the hopping rule for 
massless particles when the particle is massless. However, for parti-
cles with non-zero mass, kinks are allowed, although if  the particle 

2. Our ability to think of  a massive particle as a massless particle supplemented 
with a ‘kink’ rule comes from the fact that P(A,B) = L(A,B)+ L(A,1)L(1,B)S +L(A,1)L(1,2)L(2,B)S2 + L(A,1)L(1,2)L(2,3)L(3,B)S3 + . . . ,

P(A,B) = L(A,B)+ L(A,1)L(1,B)S +L(A,1)L(1,2)L(2,B)S2 + L(A,1)L(1,2)L(2,3)L(3,B)S3 + . . . , , where S is the shrinkage 
factor associated with a kink and it is understood that we should sum over all 
 possible intermediate points 1, 2, 3 etc.

Figure 11.4. A massive particle travelling from A  to B.
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is very light then the shrinking factor imposes a severe penalty on 
paths with many kinks. The most likely paths are therefore those 
with very few kinks. Conversely, heavy particles do not get penal-
ized much when they kink, and so they tend to be described by 
paths with lots of  zig-zagging. This seems to suggest that heavy 
particles really ought to be thought of  as massless particles that zig-
zag their way from A to B. The amount of  zig-zagging is what we 
identify as ‘mass’.

This is all rather nice, for we have a new way to think about mas-
sive particles. Figure 11.5 illustrates the propagation from A to B of  
three different particles of  increasing mass. In each case, the rule 
associated with each ‘zig’ or ‘zag’ of  the path is the same as that for 
a massless particle, and for every kink we are to pay a ‘the clock 
must be shrunk’ penalty. We should not get overly excited yet 
because we have not really explained anything fundamental. All we 
have done is to replace the word ‘mass’ with the words ‘tendency to 
zig-zag’. We are allowed to do this because they are mathematically 
equivalent descriptions of  the propagation of  a massive particle. 
But even so, it feels like an interesting thing and, as we shall now 
discover, it may turn out to be rather more than just a mathematical 
curiosity.

We are now going to move into the realm of  speculation  – 

Figure 11.5. Particles of  increasing mass propagating from A  to B. The more mas-
sive a particle is the more it zig-zags.
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although by the time you read this book the theory we are about to 
outline may have been verified. The LHC is currently busy colliding 
protons together with a combined energy of  7 TeV. ‘TeV’ stands for 
Tera electron volts, which corresponds to the amount of  energy 
an electron would have if  it were accelerated through a potential 
difference of  7 million million volts. To get a sense of  how much 
energy this is, it’s roughly the energy that subatomic particles would 
have had about a trillionth of  a second after the Big Bang and it is 
enough energy to conjure out of  thin air a mass equal to 7,000 pro-
tons (via Einstein’s E = mc2). And this is only half  the design energy; 
if  needed, the LHC has more gas in the tank.

One of  the primary reasons that eighty-five countries around the 
world have come together to build and operate this vast, audacious 
experiment is to hunt for the mechanism that is responsible for gen-
erating the masses of  the fundamental particles. The most widely 
accepted theory for the origin of  mass works by providing an explan-
ation for the zig-zagging: it posits a new fundamental particle that 
the other particles ‘bump into’ on their way through the Universe.

That particle is the Higgs boson. According to the Standard Model, 
without a Higgs the fundamental particles would hop from place to 
place without any zig-zagging and the Universe would be a very dif-
ferent place. But if  we fill empty space with Higgs particles then 
they can act to deflect particles, making them zig-zag and, as we 
have just learnt, that leads to the emergence of  ‘mass’. It is rather 
like trying to walk through a crowded pub – one gets buffeted from 
side-to-side and ends up taking a zig-zag path towards the bar.

The Higgs mechanism is named after Edinburgh theorist Peter 
Higgs and it was introduced into particle physics in 1964. The idea 
was obviously very ripe because several people came up with the 
idea at the same time – Higgs of  course, and also Robert Brout and 
François Englert working in Brussels and Gerald Guralnik, Carl 
Hagan and Tom Kibble in London. Their work was itself  built on 
the earlier efforts of  many others, including Heisenberg, Yoichiro 
Nambu, Jeffrey Goldstone, Philip Anderson and Weinberg. The full 
realization of  the idea, for which Sheldon Glashow, Abdus Salam 
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and Weinberg received the Nobel Prize in 1979, is no less than the 
Standard Model of  particle physics. The idea is simple enough  – 
empty space is not empty, and this leads to zig-zagging and therefore 
mass. But clearly we have some more explaining to do. How can it 
be that empty space is jammed full of  Higgs particles – wouldn’t we 
notice this in our everyday lives, and how did this strange state of  
affairs come about in the first place? It certainly sounds like a rather 
extravagant proposition. We have also not explained how it can be 
that some particles (like photons) have no mass while others (like W 
bosons and top quarks) weigh in with masses comparable to that of  
an atom of  silver or gold.

The second question is easier to answer than the first, at least 
superficially. Particles only ever interact with each other through a 
branching rule and Higgs particles are no different in that regard. 
The branching rule for a top quark includes the possibility that it can 
couple to a Higgs particle, and the corresponding shrinking of  the 
clock (remember all branching rules come with a shrinking fac-
tor) is much less than it is in the case of  the lighter quarks. That is 
‘why’ a top quark is so much heavier than an up quark. This doesn’t 
explain why the branching rule is what it is, of  course. The current 
answer to that is the disappointing ‘because it is’. It’s on the same 
footing as the question ‘Why are there three generations of  parti-
cles?’ or ‘Why is gravity so weak?’ Similarly, photons do not have 
any branching rule that couples them to Higgs particles and as a 
result they do not interact with them. This, in turn, means that they 
do not zig-zag and have no mass. Although we have passed the buck 
to some extent, this does feel like some kind of  an explanation, and 
it is certainly true that if  we can detect Higgs particles at the LHC 
and check that they couple to the other particles in this manner 
then we can legitimately claim to have gained a rather thrilling 
insight into the way Nature works.

The first of  our outstanding questions is a little trickier to 
explain – namely, how can it be that empty space is full of  Higgs 
particles? To get warmed up, we need to be very clear about one 
thing: quantum physics implies that there is no such thing as empty 
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space. In fact, what we call ‘empty space’ is really a seething maelstrom 
of  subatomic particles and there is no way to sweep them away and 
clean it up. Once we realize that, it becomes much less of  an intel-
lectual challenge to accept that empty space might be full of  Higgs 
particles. But let’s take one step at a time.

You might imagine a tiny region of  deep outer space, a lonely 
corner of  the Universe millions of  light years from a galaxy. As time 
passes it is impossible to prevent particles from appearing and then 
disappearing out of  nothing. Why? It is because the process of  the 
creation and annihilation of  particle–anti-particle pairs is allowed 
by the rules. An example can be found in the lower diagram in 
 Figure 10.5: imagine stripping away everything except for the elec-
tron loop – the diagram then corresponds to an electron–positron 
pair spontaneously appearing from nothing and then disappearing 
back into nothing. Because drawing a loop does not violate any of  
the rules of  QED we must acknowledge that it is a real possibility; 
remember, everything that can happen does happen. This particular 
possibility is just one of  an infinite number of  ways that empty 
space can fizz and pop, and because we live in a quantum universe 
the correct thing to do is to add all the possibilities together. The 
vacuum, in other words, has an incredibly rich structure, made 
up out of  all the possible ways that particles can pop in and out of  
existence.

That last paragraph introduced the idea that the vacuum is not 
empty, but we painted a rather democratic picture in which all of  
the elementary particles play a role. What is it about the Higgs par-
ticle that makes it special? If  the vacuum were nothing other than a 
seething broth of  matter–antimatter creation and annihilation, then 
all of  the elementary particles would continue to have zero mass – 
the quantum loops themselves are not capable of  delivering it.3 
Instead, we need to populate the vacuum with something different, 
and this is where the bath of  Higgs particles enters. Peter Higgs 

3. This is a subtle point and derives from the ‘gauge symmetry’, which under-
writes the hopping and branching rules of  the elementary particles.
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simply stipulated that empty space is packed with Higgs particles4 
and didn’t feel obliged to offer any deep explanation as to why. The 
Higgs particles in the vacuum provide the zig-zag mechanism and 
they are working overtime by interacting with each and every mas-
sive particle in the Universe, selectively retarding their motion to 
create mass. The net result of  the interactions between ordinary 
matter and a vacuum full of  Higgs particles is that the world goes 
from being a structureless place to a diverse and wonderful living 
world of  stars, galaxies and people.

The big question of  course is where those Higgs particles came 
from in the first place? The answer isn’t really known, but it is 
thought that they are the remnants of  what is known as a phase 
transition that occurred sometime shortly after the Big Bang. If  you 
are patient and watch the glass in your window as the temperature 
falls on a winter’s evening, you’ll see the structured beauty of  ice 
crystals emerge as if  by magic from the water vapour in the night 
air. The transition from water vapour to ice on cold glass is a phase 
transition – water molecules rearranging themselves into ice crys-
tals; the spontaneous breaking of  the symmetry of  a formless vapour 
cloud triggered by a drop in temperature. Ice crystals form because 
it is energetically more favourable to do so. Just as a ball rolls down 
the side of  a mountain to take up a lower energy in a valley, or elec-
trons rearrange themselves around atomic nuclei to form the bonds 
that hold molecules together, so the sculpted beauty of  a snowflake 
is a lower energy configuration of  water molecules than a formless 
cloud of  vapour.

We think that a similar thing happened early on in the Universe’s 
history. As the hot gas of  particles that was the nascent Universe 
expanded and cooled, so it transpired that a Higgs-free vacuum was 
energetically disfavoured and a vacuum filled with Higgs particles 
was the natural state. The process really is similar to the way that 
water condenses into droplets or ice forms on a cold pane of  glass. 
The spontaneous appearance of  water droplets when they con-

4. He was far too modest to call them by that name.
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dense on a pane of  glass creates the impression that those droplets 
simply emerged out of  ‘nothing’. Similarly for the Higgs, in the hot 
stages just after the Big Bang the vacuum is seething with the fleet-
ing quantum fluctuations (those loops in our Feynman diagrams), as 
particles and anti-particles pop out of  nothing before disappearing 
again. However, something radical happens as the Universe cools 
and suddenly, out of  nothing, just as the water drops appear on the 
glass, a ‘condensate’ of  Higgs particles emerges, all held together 
by  their mutual interactions in an ephemeral suspension through 
which the other particles propagate.

The idea that the vacuum is filled with material suggests that we, 
and everything else in the Universe, live out our lives inside a giant 
condensate that emerged as the Universe cooled down, just as the 
morning dew emerges with the dawn. Lest we think that the vac-
uum is populated merely as a result of  Higgs particle condensation, 
we should also remark that there is even more to the vacuum than 
this. As the Universe cooled still further, quarks and gluons also 
condensed to produce what are, naturally enough, known as quark 
and gluon condensates. The existence of  these is well established 
by experiments, and they play a very important role in our under-
standing of  the strong nuclear force. In fact, it is this condensation 
that gives rise to the vast majority of  the mass of  protons and neu-
trons. The Higgs vacuum is, however, responsible for generating 
the observed masses for the elementary particles – the quarks, elec-
trons, muons, taus and W and Z particles. The quark condensate 
kicks in to explain what happens when a cluster of  quarks binds 
together to make a proton or a neutron. Interestingly, whilst the 
Higgs mechanism is relatively unimportant when it comes to 
explaining the mass of  protons, neutrons and the heavier atomic 
nuclei, the converse is true when it comes to explaining the mass of  
the W and Z particles. For them, quark and gluon condensation 
would generate a mass of  around 1 GeV in the absence of  a Higgs 
particle, but their experimentally measured masses are closer to 100 
times this. The LHC was designed to operate in the energy domain 
of  the W and Z, where it can explore the mechanism responsible for 
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their comparatively large masses. Whether that is the eagerly antic-
ipated Higgs particle, or something hitherto undreamt of, only time 
and particle collisions will tell.

To put some rather surprising numbers on all of  this, the energy 
stored up within 1 cubic metre of  empty space as a result of  quark 
and gluon condensation is a staggering 1035 joules, and the energy 
due to Higgs condensation is 100 times larger than this. Together, 
that’s the total amount of  energy our Sun produces in 1,000 years. 
To be precise, this is ‘negative’ energy, because the vacuum is lower 
in energy than a Universe containing no particles at all. The nega-
tive energy arises because of  the binding energy associated with the 
formation of  the condensates, and is not by itself  mysterious. It is 
no more glamorous than the fact that, in order to boil water (and 
reverse the phase transition from vapour to liquid), you have to put 
energy in.

What is mysterious, however, is that such a large and negative 
energy density in every square metre of  empty space should, if  taken 
at face value, generate a devastating expansion of  the Universe such 
that no stars or people would ever form. The Universe would liter-
ally have blown itself  apart moments after the Big Bang. This is what 
happens if  we take the predictions for vacuum condensation from 
particle physics and plug them directly into Einstein’s equations 
for gravity, applied to the Universe at large. This heinous conun-
drum goes by the name of  the cosmological constant problem and 
it remains one of  the central problems in fundamental physics. Cer-
tainly it suggests that we should be very careful before claiming to 
really understand the nature of  the vacuum and/or gravity. There is 
something absolutely fundamental that we do not yet understand.

With that sentence, we come to the end of  our story because we’ve 
reached the edge of  our knowledge. The domain of  the known is not 
the arena of  the research scientist. Quantum theory, as we observed 
at the beginning of  this book, has a reputation for difficulty and 
downright contrary weirdness, exerting as it does a rather liberal 
grip on the behaviour of  the particles of  matter. But everything 
we’ve described, with the exception of  this final chapter, is known 
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and well understood. Following evidence rather than common 
sense, we are led to a theory that is manifestly able to describe a vast 
range of  phenomena, from the sharp rainbows emitted by hot atoms 
to fusion within stars. Putting the theory to use led to the most 
important technological breakthrough of  the twentieth century – 
the transistor  – a device whose operation would be inexplicable 
without a quantum view of  the world.

But quantum theory is far more than a mere explanatory triumph. 
In the forced marriage between quantum theory and relativity, 
 anti-matter emerged as a theoretical necessity and was duly dis-
covered. Spin, the fundamental property of  subatomic particles that 
underpins the stability of  atoms, was likewise a theoretical predic-
tion required for the consistency of  the theory. And now, in the 
second quantum century, the Large Hadron Collider voyages into 
the unknown to explore the vacuum itself. This is scientific pro-
gress; the gradual and careful construction of  a legacy of  explanation 
and prediction that changes the way we live. And this is what sets 
science apart from everything else. It isn’t simply another point of  
view – it reveals a reality that would be impossible to imagine, even 
for the possessor of  the most tortured and surreal imagination. Sci-
ence is the investigation of  the real, and if  the real seems surreal 
then so be it. There is no better demonstration of  the power of  the 
scientific method than quantum theory. Nobody could have come 
up with it without the most meticulous and detailed experiments, 
and the theoretical physicists who built it were able to suspend and 
jettison their deeply held and comforting beliefs in order to explain 
the evidence before them. Perhaps the conundrum of  the vacuum 
energy signals a new quantum journey, perhaps the LHC will pro-
vide new and inexplicable data, and perhaps everything in this book 
will turn out to be an approximation to a much deeper picture – the 
exciting journey to understand our Quantum Universe continues.

When we began thinking about writing this book, we spent some 
time debating how to end it. We wanted to find a demonstration of  
the intellectual and practical power of  quantum theory that would 
convince even the most sceptical reader that science really does 
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describe, in exquisite detail, the workings of  the world. We both 
agreed that there is such a demonstration, although it does involve 
some algebra – we have done our best to make it possible to follow 
the reasoning without scrutinizing the equations, but it does come 
with that warning. So, our book ends here, unless you want a little 
bit more: the most spectacular demonstration, we think, of  the 
power of  quantum theory. Good luck, and enjoy the ride.
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When stars die, many end up as super-dense balls of  nuclear matter 
intermingled with a sea of  electrons, known as ‘white dwarves’. 
This will be the fate of  our Sun when it runs out of  nuclear fuel in 
around 5 billion years time. It will also be the fate of  over 95% of  the 
stars in our galaxy. Using nothing more than a pen, paper and a little 
thought, we can calculate the largest possible mass of  these stars. 
The calculation, first performed by Subrahmanyan Chandrasekhar 
in 1930, uses quantum theory and relativity to make two very clear 
predictions. Firstly, that there should even be such a thing as a white 
dwarf  star – a ball of  matter held up against the crushing force of  its 
own gravity by the Pauli Exclusion Principle. Secondly, that if  we 
turn our attention from the piece of  paper with our theoretical 
scribbles on it and gaze into the night sky then we should never see 
a white dwarf  with a mass greater than 1.4 times the mass of  our 
Sun. These are spectacularly audacious predictions.

Today, astronomers have catalogued around 10,000 white dwarf  
stars. The majority have masses around 0.6 solar masses, but the 
largest recorded mass is just under 1.4 solar masses. This single  number, 
‘1.4’, is a triumph of  the scientific method. It relies on an under-
standing of  nuclear physics, of  quantum physics and of  Einstein’s 
Theory of  Special Relativity – an interlocking swathe of  twentieth-
century physics. Calculating it also requires the fundamental 
constants of  Nature we’ve met in this book. By the end of  this chap-
ter, we will learn that the maximum mass is determined by the ratio

(
hc
G

)3/2 1
m2

p

.

Look carefully at what we just wrote down: it depends on Planck’s 
constant, the speed of  light, Newton’s gravitational constant and 
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the mass of  a proton. How wonderful it is that we should be able to 
predict the uppermost mass of  a dying star using this combination 
of  fundamental constants. The three-way combination of  gravity, 
relativity and the quantum of  action appearing in the ratio (hc/G)1/2 
is called the Planck mass, and when we put the numbers in it works 
out at approximately 55 micrograms; roughly the mass of  a grain of  
sand. So the Chandrasekhar mass is, rather astonishingly, obtained 
by contemplating two masses, one the size of  a grain of  sand and the 
other the mass of  a single proton. From such tiny numbers emerges 
a new fundamental mass scale in Nature: the mass of  a dying star.

We could present a very broad overview of  how the Chandrasekhar 
mass comes about, but instead we’d like to do a little bit more: we’d 
like to describe the actual calculation because that is what really 
makes the spine tingle. We’ll fall short of  actually computing the 
precise number (1.4 solar masses), but we will get close to it and see 
how professional physicists go about drawing profound conclusions 
using a sequence of  carefully developed logical steps, invoking well-
known physical principles along the way. There will be no leap of  
faith. Instead, we will keep a cool head and slowly and inexorably be 
drawn to the most exciting of  conclusions.

Our starting point has to be: ‘what is a star?’ The visible Universe 
is, to a very good approximation, made up of  hydrogen and helium, 
the two simplest elements formed in the first few minutes after the 
Big Bang. After around half  a billion years of  expansion, the Uni-
verse was cool enough for slightly denser regions in the gas clouds 
to start clumping together under their own gravity. These were the 
seeds of  the galaxies, and within them, around smaller clumps, the 
first stars began to form.

The gas in these first proto-stars became hotter and hotter as they 
collapsed in on themselves, as anyone who has used a bicycle pump 
will know, because compressing a gas makes it heat up. When the 
gas reaches temperatures of  around 100,000 degrees, the electrons 
can no longer be held in orbit around the hydrogen and helium 
nuclei and the atoms get ripped apart, leaving a hot plasma of  bare 
nuclei and electrons. The hot gas tries to expand outwards and resist 
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further collapse but, for sufficiently massive clumps, gravity wins 
out. Because protons have positive electric charge they will repel 
each other but, as the gravitational collapse proceeds and the tem-
perature continues to rise, the protons move faster and faster. 
Eventually, at a temperature of  several million degrees, the protons 
are moving so fast that they get close enough for the weak nuclear 
force to take over. When that happens, two protons can react with 
one another; one of  them spontaneously changes into a neutron 
with the simultaneous emission of  a positron and a neutrino (exactly 
as illustrated in Figure 11.3 on page 202). Freed from the electrical 
repulsion, the proton and the neutron fuse under the action of  the 
strong nuclear force to make a deuteron. This process releases huge 
amounts of  energy because, just as in the formation of  a hydrogen 
molecule, binding things together releases energy.

The energy release in a single fusion event isn’t large by everyday 
standards. One million proton–proton fusion reactions generate 
roughly the same amount of  energy as the kinetic energy of  a mos-
quito in flight or a 100 watt light-bulb radiates in a nanosecond. But 
that is huge on atomic scales and, remember, we are talking about 
the dense heart of  a collapsing gas cloud in which there are around 
1026 protons per cubic centimetre. If  all the protons in a cubic centi-
metre were to fuse into deuterons, 1013 joules of  energy would be 
liberated, which is enough to power a small town for one year.

The fusion of  two protons into a deuteron is the start of  a fusion 
jamboree. The deuteron itself  is eager to fuse with a third proton to 
make a light version of  helium (called helium-3) with the emission 
of  a photon, and those helium nuclei then pair up and fuse into 
regular helium (called helium-4) with the emission of  two protons. 
At each stage, the fusing together liberates more and more energy. 
And, just for good measure, the positron, which was emitted right 
back at the start of  the chain, also rapidly fuses with an electron in 
the surrounding plasma to produce a pair of  photons. All of  this 
liberated energy makes for a hot gas of  photons, electrons and 
nuclei that pushes against the in-falling matter and halts any further 
gravitational collapse. This is a star: nuclear fusion burns up nuclear 



218

Epilogue: the Death of  Stars

fuel in the core, and that generates an outward pressure that stabil-
izes the star against gravitational collapse.

There is, of  course, only a finite amount of  hydrogen fuel avail-
able to burn and, eventually, it will run out. With no more energy 
released there is no more outward pressure; gravity once again 
takes control and the star resumes its postponed collapse. If  the star 
is massive enough, the core will heat up to temperatures of  around 
100 million degrees. At that stage, the helium produced as waste 
in the hydrogen-burning phase ignites, fusing together to produce 
 carbon and oxygen, and once again the gravitational collapse is tem-
porarily halted.

But what happens if  the star is not massive enough to initiate 
helium fusion? For stars less than about half  the mass of  our Sun, 
this is the case, and for them something very dramatic happens. The 
star heats up as it contracts, but, before the core reaches 100 million 
degrees, something else halts the collapse. That something is the 
pressure exerted by electrons due to the fact that they are in the grip 
of  the Pauli Exclusion Principle. As we have learnt, the Pauli prin-
ciple is crucial to understanding how atoms remain stable, and it 
underpins the properties of  matter. Here is another string to its bow: 
it explains the existence of  compact stars that survive despite the fact 
that they no longer burn up any nuclear fuel. How does this work?

As the star gets squashed, so the electrons within it get confined 
to a smaller volume. We can think of  an electron in the star in terms 
of  its momentum p and hence its associated de Broglie wavelength, 
h/p. In particular, the particle can only ever be described by a wave 
packet that is at least as big as its associated wavelength.1 This means 
that, when the star is dense enough, the electrons must be overlap-
ping each other, i.e. we cannot imagine them as being described by 

1. Recall from Chapter 5 that particles of  definite momentum are in fact described 
by infinitely long waves and that as we allow for some spread in the momentum 
so we can start to localize the particle. But this can only go so far and it makes no 
sense to talk about a particle of  a certain wavelength if  it is localized to a distance 
smaller than that wavelength.
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isolated wave packets. This in turn means that quantum mechanical 
effects, and the Pauli principle in particular, are important in describ-
ing the electrons. Specifically, they are being squashed together to the 
point where two electrons are attempting to occupy the same region 
of  space, and we know from the Pauli principle that they resist this. 
In a dying star, therefore, the electrons avoid each other and this 
provides a rigidity that resists any further gravitational collapse.

This is the fate of  the lightest stars, but what of  stars like our Sun? 
We left them a couple of  paragraphs ago, burning helium into car-
bon and oxygen. What happens when they run out of  helium? They 
too must then start to collapse under their own gravity, which means 
they will have their electrons squashed together. And, just as for the 
lighter stars, the Pauli principle can eventually kick in and halt the 
collapse. But, for the most massive of  stars, even the Pauli Exclusion 
Principle has its limits. As the star collapses and the electrons get 
squashed closer together, so the core heats up and the electrons move 
faster. For heavy enough stars, the electrons will eventually be mov-
ing so fast that they approach the speed of  light, and that is when 
something new happens. When they close in on light-speed, the 
pressure the electrons are able to exert to resist gravity is reduced 
to such an extent that they aren’t up to the job. They simply cannot 
beat gravity any more and halt the collapse. Our task in this chapter 
is to calculate when this happens, and we’ve already given away the 
punchline. For stars with masses greater than 1.4 times the mass of  
the Sun, the electrons lose and gravity wins.

That completes the overview that will provide the basis for our 
calculation. We can now go ahead and forget all about nuclear fusion, 
because stars that are burning are not where our interest lies. Rather, 
we are keen to understand what happens inside dead stars. We want 
to see just how the quantum pressure from the squashed electrons 
balances the force of  gravity, and how that pressure becomes dimin-
ished if  the electrons are moving too fast. The heart of  our study is 
therefore a balancing game: gravity versus quantum pressure. If  we 
can make them balance we have a white dwarf  star, but if  gravity 
wins we have catastrophe.
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Although not relevant for our calculation, we can’t leave things 
on such a cliff-hanger. As a massive star implodes, two further 
options remain open to it. If  it is not too heavy then it will keep 
squashing the protons and electrons until they too can fuse together 
to make neutrons. In particular, one proton and one electron con-
vert spontaneously into a neutron with the emission of  a neutrino, 
again via the weak nuclear force. In this way the star relentlessly 
converts into a tiny ball of  neutrons. In the words of  Russian physicist 
Lev Landau, the star converts into ‘one gigantic nucleus’. Landau 
wrote those words in his 1932 work ‘On the Theory of  Stars’, which 
appeared in print in the very same month that the neutron was dis-
covered by James Chadwick. It is probably going too far to say that 
Landau predicted the existence of  neutron stars but, with great 
prescience, he certainly anticipated something like them. Perhaps 
the credit should go to Walter Baade and Fritz Zwicky, who wrote 
in the following year: ‘With all reserve we advance the view that 
supernovae represent the transitions from ordinary stars into neu-
tron stars, which in their final stages consist of  extremely closely 

Figure 12.1. A cartoon from the 19 January 1934 edition of  the Los Angeles Times.
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packed neutrons.’ The idea was considered so outlandish that it was 
parodied in the Los Angeles Times (see Figure 12.1), and neutron stars 
remained a theoretical curiosity until the mid 1960s.

In 1965, Anthony Hewish and Samuel Okoye found ‘evidence for 
an unusual source of  high radio brightness temperature in the crab 
nebula’, although they failed to identify it as a neutron star. The 
positive ID came in 1967 by Iosif  Shklovsky and, shortly afterwards, 
after more detailed measurements, by Jocelyn Bell and Hewish him-
self. This first example of  one of  the most exotic objects in the 
Universe was subsequently named the ‘Hewish Okoye Pulsar’. Inter-
estingly, the very same supernova that created the Hewish Okoye 
Pulsar was also observed by astronomers, a thousand years earlier. 
The great supernova of  1054, the brightest in recorded history, was 
observed by Chinese astronomers and, as shown by a famous draw-
ing on an overhanging cliff  edge, by the peoples of  Chaco Canyon 
in the south-western United States.

We haven’t yet said how those neutrons manage to fend off gravity 
and prevent further collapse, but you can probably guess how it works. 
The neutrons (just like electrons) are slaves to the Pauli principle. 
They too can halt further collapse and so, just like white dwarves, 
neutron stars represent a possible end-point in the life of stars. Neu-
tron stars are a detour as far as our story goes, but we can’t leave them 
without remarking that these are very special objects in our won-
derful Universe: they are stars the size of  cities, so dense that a 
teaspoonful weights as much as a mountain, held up by nothing 
more than the natural aversion to one another of  spin-half  particles.

There is only one option remaining for the most massive stars in 
the Universe – stars in which even the neutrons are moving close to 
light-speed. For such giants, disaster awaits, because the neutrons 
are no longer able to generate sufficient pressure to resist gravity. 
There is no known physical mechanism to stop a stellar core with a 
mass of  greater than around three times the mass of  our Sun falling 
in on itself, and the result is a black hole: a place where the laws of  
physics as we know them break down. Presumably Nature’s laws 
don’t cease to operate, but a proper understanding of  the inner 
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workings of  a black hole requires a quantum theory of  gravity, and 
no such theory exists today.

It is time to get back on message and to focus on our twin goals 
of  proving the existence of  white dwarf  stars and calculating the 
Chandrasekhar mass. We know how to proceed: we must balance 
the electron pressure with gravity. This is not going to be a  calculation 
we can do in our heads, so it will pay to make a plan of  action. Here’s 
the plan; it’s quite lengthy because we want to clear up some back-
ground detail first and prepare the ground for the actual calculation.

Step 1: We need to determine what the pressure inside the star is 
due to those highly compressed electrons. You might be wondering 
why we are not worrying about the other stuff  inside the star – what 
about the nuclei and the photons? Photons are not subject to the 
Pauli principle and, given enough time, they’ll leave the star in any 
case. They have no hope of  fighting gravity. As for the nuclei, the 
half-integer spin nuclei are subject to Pauli’s rule but (as we shall 
see) their larger mass means they exert a smaller pressure than do 
the electrons and we can safely ignore their contribution to the bal-
ancing game. That simplifies matters hugely – the electron pressure 
is all we need, and that is where we should set our sights.

Step 2: After we’ve figured out the electron pressure, we’ll need to 
do the balancing game. It might not be obvious how we should go 
about things. It’s one thing to say ‘gravity pulls in and the electrons 
push out’ but it is quite another thing to put a number on it.

The pressure is going to vary inside the star; it will be larger in 
the centre and smaller at the surface. The fact that there is a pres-
sure gradient is crucial. Imagine a cube of  star matter sitting 
somewhere inside the star, as illustrated in Figure 12.2. Gravity will 
act to draw the cube towards the centre of  the star and we want to 
know how the pressure from the electrons goes about countering it. 
The pressure in the electron gas exerts a force on each of  the six 
faces of  the cube, and the force is equal to the pressure at that face 
multiplied by the area of  the face. That statement is precise; until 
now we have been using the word ‘pressure’ assuming that we all 
have sufficient intuitive understanding that a gas at high pressure 
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‘pushes more’ than a gas at low pressure. Anyone who has had to 
pump air into a flat car tyre knows that.

Since we are going to need to understand pressure properly, a 
brief  diversion into more familiar territory is in order. Sticking with 
the tyre example, a physicist would say that a tyre is flat because the 
air pressure inside is insufficient to support the weight of  the car 
without deforming the tyre: that’s why we get to go to all the best 
parties. We can go ahead and calculate what the correct tyre pressure 
should be for a car with a mass of  1,500 kg if  we want 5 centimetres 
of  tyre to be in contact with the ground, as illustrated in Figure 12.3: 
it’s chalk dust time again.

If  the tyre is 20 cm wide and we want a 5 cm length of  the tyre 
to be touching the road, then the area of  tyre in contact with the 
ground will be 20 × 5 = 100 square centimetres. We don’t know the 
requisite tyre pressure yet – this is what we want to calculate – so 
let’s represent it by the symbol P. We need to know the downward 
force on the ground exerted by the air within the tyre. This is equal 
to the pressure multiplied by the area of  tyre in contact with the 
floor, i.e. P × 100 square centimetres. We should multiply that by 
four, because our car has four tyres: P × 400 square centimetres. 
That is the total force exerted on the ground by the air within the 
tyres. Think of  it like this: the air molecules inside the tyre are pound-

Figure 12.2. A small cube somewhere within the heart of  a star. The arrows indi-
cate the pressure exerted on the cube by the electrons within the star.
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ing the ground (they are, to be pedantic, pounding the rubber in the 
tyre in contact with the ground, but that isn’t important). The 
ground doesn’t usually give way, in which case it pushes back with 
an equal but opposite force (so we did use Newton’s third law after all). 
The car is being pushed up by the ground and pulled down by gravity 
and since it doesn’t sink into the ground or leap into the air, we know 
that these two forces must balance each other. We can therefore 
equate the P × 400 square centimetres of  force pushing up with the 
downward force of  gravity. That force is just the weight of  the car 
and we know how to work that out using Newton’s second law, 
F = ma, where a is the acceleration due to gravity at the Earth’s sur-
face, which is 9.81 m/s2. So the weight is 1,500 kg × 9.8 m/s2 = 14,700 
Newtons (1 Newton is equal to 1 kg m/s2 and it is roughly the weight 
of  an apple). Equating the two forces implies that

PP × 400 cm2 = 14700 N.,P × 400 cm2 = 14700N.

This is an easy equation to solve: PP = (14700/400)N/cm2 = 36.75N/cm2,P = (14700/400) N/cm2 = 36.75N/cm2

P = (14700/400)N/cm2 = 36.75N/cm2. A pressure of  36.75 Newtons per square centimetre is 
probably not a very familiar way of  stating a tyre pressure, but we 

Figure 12.3. A tyre deforming slightly as it supports the weight of  a car.

5cm
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can convert it into the more familiar ‘bar’. 1 bar is standard air pres-
sure, and is equal to 101,000 Newtons per square metre. There are 
10,000 square centimetres in a square metre, so 101,000 Newtons 
per square metre is equivalent to 10.1 Newtons per square centi-
metre. Our desired tyre pressure is therefore 36.75/10.1 = 3.6 bar 
(or 52 psi – you can work that one out for yourself ). We can also use 
our equation to deduce that, if  the tyre pressure decreases by 505% 
to 1.8 bar, then we’ll double the area of  tyre in contact with the 
ground, which makes for a flatter tyre. After that refresher course 
on pressure we are ready to return to the little cube of  star matter 
illustrated in Figure 12.2.

If  the bottom face of  the cube is closer to the centre of  the star 
then the pressure on it should be a little bit bigger than the pres-
sure pressing on the top face. That pressure difference gives rise to a 
force on the cube that wants to push the cube away from the centre 
of  the star (‘up’ in the figure) and that is just what we want, because 
the cube will, at the same time, be pulled towards the centre of  the 
star by gravity (‘down’ in the figure). If  we could work out how to 
balance those two forces then we’d have developed some under-
standing of  the star. But that is easier said than done because, 
although step 1 will allow us to work out how much the cube is 
pushed out by the electron pressure, we still have to figure out by 
how much gravity pulls in the opposite direction. By the way, we do 
not need to worry about the pressure pushing against the sides of  
our cube because the sides are equidistant from the centre of  the star, 
so the pressure on the left side will balance the pressure on the right 
side and that ensures the cube does not move to the left or right.

To work out the force of  gravity on the cube we need to make use 
of  Newton’s law of  gravity, which tells us that every single piece of  
matter within the star pulls on our little cube by an amount that 
decreases in strength the farther the piece is from our cube. So more 
distant pieces pull less than closer ones. To deal with the fact that the 
gravitational pull on our cube is different for different pieces of  star 
matter, depending on their distance away, looks like a tricky problem 
but we can see how to do it, in principle at least – we should chop the 
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star into lots of  pieces and then work out the force on the cube for each 
and every such piece. Fortunately, we do not need to imagine chop-
ping the star up because we can exploit a very beautiful result. Gauss’ 
law (named after the legendary German mathematician Carl Friedrich 
Gauss) informs us that: (a) we can totally ignore the gravity from all 
the pieces sitting further out from the centre of  the star than our little 
cube; (b) the net gravitational effect of  all of  the pieces that sit closer 
to the centre is exactly as if  all of  those pieces were squashed together 
at the exact centre of  the star. Using Gauss’ law in conjunction with 
Newton’s law of  gravity we can say that the cube experiences a force 
that pulls it towards the centre of  the star and that force is equal to

G
MinMcube

r2
,

where Min is the mass of  the star lying within a sphere whose radius 
reaches only as far out as the cube, Mcube is the mass of  the cube and 
r is the distance of  the cube from the star’s centre (and G is New-
ton’s constant). For example, if  the cube sits on the surface of  the 
star then Min is the total mass of  the star. For all other locations, Min 
is smaller than that.

We’re now making progress because to balance the forces on the 
cube (which we remind you means that the cube doesn’t move and that 
means the star is not going to explode or collapse2) we require that

 
(Pbottom − Ptop)A = G

MinMcube

r2
(1)

 
(Pbottom − Ptop)A = G

MinMcube

r2
(1)

where Pbottom and Ptop are the pressures of  the electron gas at the 
upper and lower faces of  the cube and A is the area of  each side of  
the cube (remember, the force exerted by a pressure is equal to the 
pressure multiplied by the area). We have labelled this equation ‘(1)’ 
because it is very important and we will want to refer back to it.

2. We can generalize to the entire star because we are not being specific about 
where the cube actually is. If  we can show that a cube located anywhere in the star 
does not move then that means all such cubes don’t move and the star is stable.
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Step 3: Make a cup of  tea and feel pleased with ourselves because, 
after carrying out step 1, we will have figured out the pressures, 
Pbottom and Ptop, and step 2 has made precise how to balance the 
forces. The real work is yet to come, though, because we still have to 
actually carry out step 1 and determine the pressure difference 
appearing on the left-hand side of  equation (1). That is our next task.

Imagine a star packed with electrons and other stuff. How are the 
electrons scattered about? Let’s focus our attention on a ‘typical’ elec-
tron. We know that electrons obey the Pauli Exclusion Principle, 
which means that no two electrons are likely to be found in the same 
region of  space. What does that mean for the sea of  electrons that 
we’ve been referring to as the ‘electron gas’ in our star? Because the 
electrons are necessarily separated from each other, we can suppose 
that each electron sits all alone inside a tiny imaginary cube within the 
star. Actually, that’s not quite right because we know that electrons 
come in two types – ‘spin up’ and ‘spin down’ – and the Pauli principle 
only forbids identical particles from getting too close, which means we 
can fit two electrons inside a cube. This should be contrasted with the 
situation that would arise if  the electrons did not obey the Pauli prin-
ciple. In that case the electrons would not be localized two-at-a-time 
inside ‘virtual containers’. Rather they could spread out and enjoy a 
much greater living space. In fact, if  we were to ignore the various 
ways that the electrons can interact with each other and with the other 
particles in the star, there would be no limit to their living room.

We know what happens when we confine a quantum particle: it 
hops about according to Heisenberg’s Uncertainty Principle, and the 
more it is confined the more it hops. That means that, as our would-
be white dwarf  collapses, so the electrons get increasingly confined 
and that makes them increasingly agitated. It is the pressure exerted 
by their agitation that will halt the gravitational collapse.

We can do better than words, because we can use Heisenberg’s 
Uncertainty Principle to determine the typical momentum of  an 
electron. In particular, if  we confine the electron to a region of  size 
∆x then it will hop around with a typical momentum p ∼ h/∆x. 
Actually, in Chapter 4 we argued that this is more like an upper limit 
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on the momentum and that the typical momentum is somewhere 
between zero and this value; that piece of  information is worth 
remembering for later. Knowing the momentum allows us, immedi-
ately, to learn two things. Firstly, if  the electrons didn’t obey Pauli 
then they would not be confined to a region of  size ∆x but rather to 
some much larger size. That in turn would result in much less jig-
gling, and less jiggling means less pressure. So it is clear how the 
Pauli principle is entering the game; it is putting the squeeze on the 
electrons so that, via Heisenberg, they get a supercharged jiggle. In a 
moment we’ll convert this idea of  a supercharged jiggle into a for-
mula for the pressure, but first we should mention the second thing 
we can learn. Because the momentum p = mv, the speed of  the jig-
gle also depends inversely on the mass, so the electrons are jumping 
around much more vigorously than the heavier nuclei that also make 
up the star, and that is why the pressure exerted by the nuclei is 
unimportant. So how do we go from knowing the momentum of  an 
electron to computing the pressure a gas of  similar electrons exerts?

What we need to do first is to work out how big the little chunks 
containing the pairs of  electrons must be. Our little chunks have 
volume (∆x)3, and because we have to fit all the electrons inside the 
star, we can express this in terms of  the number of  electrons within 
the star (N) divided by the volume of  the star (V ). We’ll need pre-
cisely N/2 containers to accommodate all of  the electrons because 
we are allowed two electrons inside each container. This means that 
each container will occupy a volume of  (V ) divided by N/2, which is 
equal to 2(V/N). We’ll need the quantity N/V  (the number of  elec-
trons per unit volume inside the star) quite a lot in what follows, so 
we’ll give it its own symbol n. We can now write down what the 
volume of  the containers must be in order to contain all the elec-
trons in the star, i.e. (∆x)3 = 2/n. Taking the cube root of  the right 
hand side allows us to conclude that

∆x = 3
√

2/n = (2/n)1/3.

We can now plug this into our expression from the Uncertainty 
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Principle to get the typical momentum of  the electrons due to their 
quantum jiggling:

 p ∼ h(n/2)1/3 (2), p ∼ h(n/2)1/3 (2),

where the ∼ sign means ‘something like’. Clearly this is a bit vague 
because the electrons will not all be jiggling in exactly the same 
way: some will move faster than the typical value and some will 
move more slowly. The Heisenberg Uncertainty Principle isn’t cap-
able of  telling us exactly how many electrons move at this speed and 
how many at that. Rather, it provides a more ‘broad brush’ state-
ment and says if  you squeeze an electron down then it will jiggle 
with a momentum something like h/∆x. We are going to take that 
typical momentum and assume it’s the same for all the electrons. In 
the process, we will lose a little precision in our calculation but gain 
a great deal of  simplicity as a result, and we are certainly thinking 
about the physics in the right way.3

We now know the speed of  the electrons and that is enough 
information to work out how much pressure they exert on the tiny 
cube. To see that, imagine a fleet of  electrons all heading in the 
same direction at the same speed (v) towards a flat mirror. They hit 
the mirror and bounce back, again travelling at the same speed but 
in the opposite direction. Let us compute the force exerted by the 
electrons on the mirror. After that we can attempt the more realistic 
calculation, where the electrons are not all travelling in the same 
direction. This methodology is very common in physics – first think 
about a simpler version of  the problem you want to solve. That way 
you get to learn about the physics without biting off  more than you 
can chew and gain confidence before tackling the harder problem. 
Imagine that the electron fleet consists of  n particles per cubic 
metre and that, for the sake of  argument, it has a circular cross-
section of  area 1 square metre – as illustrated in Figure 12.4. In one 
second nv electrons will hit the mirror (if  v  is measured in metres 

3. It is of  course possible to compute more precisely how the electrons move 
around but at the price of  introducing more mathematics.
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Figure 12.4. A fleet of  electrons (the little dots) all heading in the same direction. 
All of  the electrons in a tube this size will smash into the mirror every second.

    × 1 second

area
1m2

per second). We know that because all of  the electrons stretching 
from the mirror to a distance v × 1 second away will smash into the 
mirror every second, i.e. all of  the electrons in the tube drawn in the 
figure. Since a cylinder has a volume equal to its cross-sectional area 
multiplied by its length, the tube has a volume of  v cubic metres and 
because there are n electrons per cubic metre in the fleet it follows 
that nv electrons hit the mirror every second.

When each electron bounces off  the mirror it gets its momen-
tum reversed, which means that each electron changes its momentum 
by an amount equal to 2mv. Now, just as it takes a force to halt a 
moving bus and send it travelling back in reverse, so it takes a force 
to reverse the momentum of  an electron. This is Isaac Newton once 
again. In Chapter 1 we wrote his second law as F = ma, but this is a 
special case of  a more general statement, which states that the force 
is equal to the rate at which momentum changes.4 So the whole fleet 
of  electrons will impart a net force on the mirror F = 2mv × (nv), 
because this is the net change in momentum of  the electrons every 
second. Due to the fact that the electron beam has an area of  1 square 
metre, this is also equal to the pressure exerted by the electron fleet 
on the mirror.

It is only a short step to go from a fleet of  electrons to a gas of  
electrons. Rather than all the electrons ploughing along in the same 

4. Newton’s second law can be written as F = dp/dt. For constant mass this can be 
written in the more familiar form: F = mdv/dt = ma.
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direction, we have to take into account that some travel up, some 
down, some to the left and so on. The net effect is to reduce the 
pressure in any one direction by a factor of  6 (think of  the six faces 
on a cube) to (2mv) × (nv)/6 = nmv2/3. We can replace v  in this 
equation by our Heisenberg-informed estimate of  the typical speeds 
at which the electrons are zipping about (i.e. the previous equation 
(2)) to get the final result for the pressure exerted by the electrons in 
a white dwarf  star:5

P =
1
3
nm

h2

m2

n

2

2/3
=

1
3

1
2

2/3
h2

m
n5/3

If  you recall, we said that this was only an estimate. The full result, 
using a lot more mathematics, is

 
P =

1
40

3
π

2/3
h2

m
n5/3

 
(3)

This is a nice result. It tells us that the pressure at some place in 
the  star varies in proportion to the number of  electrons per unit 
volume at that place raised to the power of  5/3. You should not be 
concerned that we did not get the constant of  proportionality cor-
rect in our approximate treatment – the fact that we got everything 
else right is what matters. In fact, we did already say that our esti-
mate of  the momentum of  the electrons is probably a little too big 
and this explains why our estimate of  the pressure is bigger than the 
true value.

Knowing the pressure in terms of  the density of  electrons is a 
good start but it will suit our purposes better to express it in terms 
of  the actual mass density in the star. We can do this under the very 
safe assumption that the vast majority of  the star’s mass comes from 
the nuclei and not the electrons (a single proton has a mass nearly 
 2,000 times greater than that of  an electron). We also know that the 
number of  electrons must be equal to the number of  protons in the 
star because the star is electrically neutral. To get the mass density 

5. Here we have combined the exponents according to the general rule xaxb = xa+bxaxb = xa+bxaxb = xa+b.
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we need to know how many protons and neutrons there are per 
cubic metre within the star and we should not forget the neutrons 
because they are a by-product of  the fusion process. For lighter 
white dwarfs, the core will be predominantly helium-4, the end 
product of  hydrogen fusion, and this means that there will be equal 
numbers of  protons and neutrons. Now for a little notation. The 
atomic mass number, A, is conventionally used to count the num-
ber of  protons + neutrons inside a nucleus and A = 4 for helium-4. 
The number of  protons in a nucleus is given the symbol Z  and for 
helium Z = 2 . We can now write down a relationship between the 
electron density, n, and the mass density, ρ:

n = Zρ/(mpA)

and we’ve assumed that the mass of  the proton, mp, is the same as 
the mass of  the neutron, which is plenty good enough for our pur-
poses. The quantity mpA  is the mass of  each nucleus; ρ/mpA is 
then the number of  nuclei per unit volume, and Z  times this is the 
number of  protons per unit volume, which must be the same as the 
number of  electrons – and that’s what the equation says.

We can use this equation to replace n in equation (3), and because 
n is proportional to ρ the upshot is that the pressure varies in pro-
portion to the density to the power of  5/3. The salient physics we 
have just discovered is that

 P = κρ5/3 (2) (4)

and we should not be worrying too much about the pure numbers 
that set the overall scale of  the pressure, which is why we just bun-
dled them all up in the symbol κ. It’s worth noting that κ depends 
on the ratio of  Z  and A, and so will be different for different kinds 
of  white dwarf  star. Bundling some numbers together into one 
symbol helps us to ‘see’ what is important. In this case the symbols 
could distract us from the important point, which is the relationship 
between the pressure and the density in the star.

Before we move on, notice that the pressure from quantum jig-
gling doesn’t depend upon the temperature of  the star. It only cares 
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about how much we squeeze the star. There will also be an add-
itional contribution to the electron pressure that comes about simply 
because the electrons are whizzing around ‘normally’ due to their 
temperature, and the hotter the star, the more they whizz around. 
We have not bothered to talk about this source of  pressure because 
time is short and, if  we were to go ahead and calculate it, we would 
find that it is dwarfed by the much larger quantum pressure.

Finally, we are ready to feed our equation for the quantum pres-
sure into the key equation (1), which is worth repeating here:

 
(Pbottom − Ptop)A = G

MinMcube

r2
(1).

 (Pbottom − Ptop)A = G
MinMcube

r2
(1).

But this is not as easy as it sounds because we need to know the dif-
ference in the pressures at the upper and lower faces of  the cube. 
We could re-write equation (1) entirely in terms of  the density 
within the star, which is itself  something that varies from place to 
place inside the star (it must be otherwise there would be no pres-
sure difference across the cube) and then we could try to solve the 
equation to determine how the density varies with distance from 
the star’s centre. To do this is to solve a differential equation and we 
want to avoid that level of  mathematics. Instead, we are going to be 
more resourceful and think harder (and calculate less) in order to 
exploit equation (1) to deduce a relationship between the mass and 
the radius of  a white dwarf  star.

Obviously the size of  our little cube and its location within the 
star are completely arbitrary, and none of  the conclusions we are 
going to draw about the star as a whole can depend upon the details 
of  the cube. Let’s start by doing something that might seem point-
less. We are quite entitled to express the location and size of  the 
cube in terms of  the size of  the star. If  R is the radius of  the star, 
then we can write the distance of  the cube from the centre of  the 
star as r = aR , where a is simply a dimensionless number between 
0 and 1. By dimensionless, we mean that it is a pure number and car-
ries no units. If  a = 1 , the cube is at the surface of  the star and if  
a = 1/21/2 it is halfway out from the centre. Similarly, we can write the 
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size of  the cube in terms of  the radius of  the star. If  L is the length 
of  a side of  the cube, then we can write L = bR where, again, b is a 
pure number, which will be very small if  we want the cube to be 
small relative to the star. There is absolutely nothing deep about this 
and, at this stage, it should seem so obvious as to appear pointless. 
The only noteworthy point is that R is the natural distance to use 
because there are no other distances relevant to a white dwarf  star 
that could have provided any sensible alternatives.

Likewise, we can continue our strange obsession and express the 
density of  the star at the position of  the cube in terms of  the aver-
age density of  the star, i.e. we can write ρ = fρ̄ where f  is, once 
again, a pure number and ρ = fρ̄ is the average density of  the star. As we 
have already pointed out, the density of  the cube depends on its 
position inside the star – if  it is closer to the centre, it will be more 
dense. Given that the average density ρ̄ does not depend on the pos-
ition of  the cube, then f  must do so, i.e. f  depends on the distance 
r, which obviously means it depends on the product aR. Now, here 
is the key piece of  information that underpins the rest of  our calcu-
lation: f  is a pure number and R is not a pure number (because it is 
measuring a distance). This fact implies that f  can only depend 
upon a and not on R at all. This is a very important result, because 
it is telling us that the density profile of  a white dwarf  star is ‘scale 
invariant’. This means the density varies with radius in the same 
way no matter what the radius of  the star is. For example, the dens-
ity at a point 3/4 of  the way out from the centre of  the star will be the 
same fraction of  the mean density in every white dwarf  star, regard-
less of  the star’s size. There are two ways of  appreciating this crucial 
result and we thought we’d present them both. One of  us explained 
it thus: ‘That’s because any dimensionless function of  r (which is 
what f  is) can only be dimensionless if  it is a function of  a dimen-
sionless variable, and the only dimensionless variable we have is 
r/R = a, because R is the only quantity which carries the dimen-
sions of  distance that we have at our disposal.’

The other author feels that the following is clearer: ‘f  can in gen-
eral depend in a complicated way on r, the distance of  the little cube 
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from the centre of  the star. But let’s assume for the sake of  this para-
graph that it is directly proportional to it, i.e. f ∝ r2. In other words, 
f = Br , where B  is a constant. Here, the key point is that we want f  
to be a pure number, whilst r is measured in (say) metres. That 
means that B  must be measured in 1/metres, so that the units of  
distance cancel each other out. So what should we choose for B? We 
can’t just choose something arbitrary, like ‘1 inverse metres’, because 
this would be meaningless and has nothing to do with the star. Why 
not choose 1 inverse light years for example, and get a very different 
answer? The only distance we have to hand is R, the physical radius 
of  the star, and so we are forced to use this to ensure that f  will 
always be a pure number. This means that f  depends only on r/R. 
You should be able to see that the same conclusion can be drawn if  
we started out by assuming that f ∝ r2 say.’ Which is just what he 
said, only longer.

This means that we can express the mass of  our little cube, of  
size L and volume L3, sitting at a distance r from the centre of  the 
star, as Mcube = f(a)L3ρ̄. We wrote f(a) instead of  just f  in order to 
remind us that f  really only depends upon our choice of  a = r/R  
and not on the large-scale properties of  the star. The same argu-
ment can be used to say that we can write Min = g(a)M  where g(a) 
is again only a function of  a. For example, the function g(a) evalu-
ated at a = 1/2 tells us the fraction of  the star’s mass lying in a 
sphere of  half  the radius of  the star itself, and that is the same for all 
white dwarf  stars, regardless of  their radius because of  the argu-
ment in the previous paragraph.6 You might have noticed that we 
are steadily working our way through the various symbols which 
appear in equation (1), replacing them by dimensionless quantities 
(a, b, f  and g) multiplied by quantities that depend only on the mass 
and radius of  the star (the average density of  the star is determined 
in terms of  M  and R because ρ̄ = M/V  and V = 4πR3/3, the vol-
ume of  a sphere). To complete the task, we just need to do the same 

6. For those of  a mathematical bent, show that g(a) = 4πR3ρ̄
a

0 x2f(x)dx, i.e. that 
the function g (a ) is actually determined once we know the function f (a ).
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for the pressure difference, which we can (by virtue of  equation (4)) 
write as Pbottom − Ptop = h(a, b)κρ̄5/3  where h(a, b) is a dimensionless 
quantity. The fact that h(a, b) depends upon both of  a and b is because 
the pressure difference not only depends on where the cube is (rep-
resented by a) but also on how big it is (represented by b): bigger 
cubes will have a larger pressure difference. The key point is that, just 
like f (a) and g(a), h(a, b) cannot depend upon the radius of  the star.

We can make use of  the expressions we just derived to rewrite 
equation (1):

(hκρ̄5/3 × (b2R2) = G
(gM ) × (fb3R3ρ̄)

a2R2
)

That looks like a mess and not much like we are within one page of  
hitting the jackpot. The key point is to notice that this is expressing 
a relationship between the mass of  the star and its radius – a con-
crete relation between the two is within touching distance (or 
desperate grasping distance, depending on how well you handled 
the mathematics). After substituting in for the average density of  
the star (i.e. ρ̄ = M/(4πR3/3)) this messy equation can be rearranged 
to read

 RM 1/3 = κ/(λG) (5), RM 1/3 = κ/(λG) (5),

where     λ =
3
4π

bfg
ha2

Now λ only depends upon the dimensionless quantities a,  b, f , g 
and h , which means that it does not depend upon the quantities that 
describe the star as a whole, M  and R, and this means that it must 
take on the same value for all white dwarf  stars.

If  you are worrying what would happen if  we were to change a 
and/or b (which means changing the locations and/or size of  our 
little cube) then you have missed the power of  this argument. Taken 
at face value, it certainly looks like changing a and b will change λ 
so that we will get a different answer for RM 1/3. But that is impos-
sible, because we know that RM 1/3  is something that depends on 
the star and not on the specific properties of  a little cube that we 
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might or might not care to dream up. This means that any variation 
in a or b must be compensated for by corresponding changes in f , g 
and h .

Equation (5) says, quite specifically, that white dwarves can exist. 
It says that because we’ve been successfully able to balance the 
 gravity–pressure equation (equation (1)). That is not a trivial thing – 
because it might have been possible that the equation could not be 
satisfied for any combination of  M  and R. Equation (5) also makes 
the prediction that the quantity RM 1/3 must be a constant. In other 
words, if  we look up into the sky and measure the radius and the 
mass of  white dwarves, we should find that the radius multiplied by 
the cube root of  the mass will give the same number for every white 
dwarf. That is a bold prediction.

The argument that we just presented can be improved upon 
because it is possible to calculate exactly what the value of  λ should 
be, but to do that we would need to solve a second-order differential 
equation in the density, and that is a mathematical bridge too far for 
this book. Remember, λ is a pure number: it simply ‘is what it is’ and 
we can, with a little higher-level maths, compute it. The fact that we 
did not actually work it out here should not detract at all from our 
achievements: we have proven that white dwarf  stars can exist and 
we have managed to make a prediction relating their mass and 
radius. After calculating λ (which can be done on a home com-
puter), and after substituting in the values for κ  and G, the prediction 
is that

RM 1/3 = (3.5 × 1017 kg1/3m) × (Z/A)5/3

which is equal to 1.1 × 1017 kg1/3m for cores of  pure helium, carbon 
or oxygen (Z/A = 1/2). For iron cores, Z/A = 26/56 and the 1.1 
reduces slightly to 1.0. We trawled the academic literature and col-
lected together the data on the masses and radii of  sixteen white 
dwarf  stars sprinkled about the Milky Way, our galactic backyard. 
For each we computed the value of  RM 1/3  and the result is that 
astronomical observations reveal RM 1/3 ≈ 0.9 × 1017 kg1/3m. The 
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agreement between the observations and theory is thrilling – we 
have succeeded in using the Pauli Exclusion Principle, the Heisen-
berg Uncertainty Principle and Newton’s law of  gravity to predict 
the mass–radius relationship of  white dwarf  stars.

There is, of  course, some uncertainty on these numbers (the the-
ory value of  1.0 or 1.1 and the observational number equal to 0.9). A 
proper scientific analysis would now start talking about just how 
likely it is that the theory and experiment are in agreement, but for 
our purposes that level of  analysis is unnecessary because the agree-
ment is already staggeringly good. It is quite fantastic that we have 
managed to figure all this out to an accuracy of  something like 10%�, 
and is compelling evidence that we have a decent understanding of  
stars and of  quantum mechanics.

Professional physicists and astronomers would not leave things 
here. They would be keen to test the theoretical understanding in as 
much detail as possible, and to do that means improving on the 
description we presented in this chapter. In particular, an improved 
analysis would take into account that the temperature of  the star 
does play some role in its structure. Furthermore, the sea of  elec-
trons is swarming around in the presence of  positively charged 
atomic nuclei and, in our calculation, we totally ignored the interac-
tions between the electrons and the nuclei (and between electrons 
and electrons). We neglected these things because we claimed that 
they would produce fairly small corrections to our simpler treat-
ment. That claim is supported by more detailed calculations and it 
is why our simple treatment agrees so well with the data.

We have obviously learnt an awful lot already: we have estab-
lished that the electron pressure is capable of  supporting a white 
dwarf  star and we have managed to predict with some precision 
how the radius of  the star changes if  we add or remove mass from 
the star. Unlike ‘ordinary’ stars that are eagerly burning fuel, notice 
that white dwarf  stars have the feature that adding mass to a star 
makes it smaller. This happens because the extra stuff  we add goes 
into increasing the star’s gravity, and that makes it contract. Taken 
at face value the relationship expressed in equation (5) seems to 
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imply that we would need to add an infinite amount of  mass 
before the star shrinks to no size at all. But this isn’t what happens. 
The important thing, as we mentioned at the beginning of  the 
chapter, is that we eventually move into the regime where the 
 electrons are so tightly packed that Einstein’s Theory of  Special 
Relativity becomes important because the speed of  the electrons 
starts to approach the speed of  light. The impact on our calculation 
is that we have to stop using Newton’s laws of  motion, and replace 
them with Einstein’s laws. This, as we shall now see, makes all the 
difference.

What we’re about to find is that as the star gets more massive, the 
pressure exerted by the electrons will no longer be proportional to 
the density raised to the power 5 ⁄3 ; instead, the pressure increases 
less quickly with density. We will do the calculation in a moment, 
but straight away we can see that this could have catastrophic con-
sequences for the star. It means that when we add mass, there will 
be the usual increase in gravity but a smaller increase in pressure. 
The star’s fate hinges on just how much ‘less quickly’ the pressure 
varies with density when the electrons are moving fast. Clearly it is 
time to figure out what the pressure of  a ‘relativistic’ electron gas is.

Fortunately, we do not need to wheel in the heavy machinery of  
Einstein’s theory because the calculation of  the pressure in a gas of  
electrons moving close to light speed follows almost exactly the 
same reasoning as that we just presented for a gas of  ‘slow-moving’ 
electrons. The key difference is that we can no longer write that the 
momentum p = mv, because this is not correct any more. What is 
correct, though, is that the force exerted by the electrons is still equal 
to the rate of  change of  their momentum. Previously, we deduced 
that a fleet of  electrons bouncing off  a mirror exerts a  pressure 
P = 2mv × (nv). For the relativistic case, we can write the same 
expression, but providing that we replace mv  by the momentum, p. 
We are also assuming that the speed of  the electrons is close to 
the speed of  light, so we can replace v  with c. Finally, we still have to 
divide by 6 to get the pressure in the star. This means that we can write 
that the pressure for the relativistic gas as P = 2p × nc/6 = pnc/3. 
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Just as before, we can now go ahead and use Heisenberg’s Uncer-
tainty Principle to say that the typical momentum of  the confined 
electrons is h(n/2)1/3  and so

P =
1
3
nch

n

2

1/3
∝ n4/3

Again we can compare this to the exact answer, which is

P =
1
16

3
π

1/3

hcn4/3

Finally, we can follow the same methodology as before to express 
the pressure in terms of  the mass density within the star and derive 
the alternative to equation (4):

P = κ ρ4/3

where κ′ ∝ hc × (Z/(Amp))4/3. As promised, the pressure increases 
less quickly as the density increases than it does for the non-relativ-
istic case. Specifically, the density increases with a power of  4/3 rather 
than 5/3. The reason for this slower variation can be traced back to 
the fact that the electrons cannot travel faster than the speed of  
light. This means that the ‘flux’ factor, nv, which we used to com-
pute the pressure saturates at nc and the gas is not capable of  
delivering the electrons to the mirror (or face of  the cube) at a suffi-
cient rate to maintain the ρ5/3  behaviour.

We can now explore the implications of  this change because we 
can go through the same argument as in the non-relativistic case to 
derive the counterpart to equation (5):

κ′M 4/3 ∝ GM 2

This is a very important result because, unlike equation (5), it does 
not have any dependence upon the radius of  the star. The equation 
is telling us that this kind of  star, packed with light-speed electrons, 
can only have a very specific value of  its mass. Substituting in for κ′  
from the previous paragraph gives us the prediction that
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M ∝ hc
G

3/2
Z

Amp

2

This is exactly the result we advertised right at the start of  this chap-
ter for the maximum mass that a white dwarf  star can possibly have. 
We are very close to reproducing Chandrasekhar’s result. All that 
remains to understand is why this special value is the maximum 
possible mass.

We have learnt that for white dwarf  stars that are not too mas-
sive, the radius is not too small and the electrons are not too 
squashed. They therefore do not quantum jiggle to excess and their 
speeds are small compared to the speed of  light. For these stars, we 
have seen that they are stable with a mass–radius relationship of  the 
form RM 1/3 = constant. Now imagine adding more mass to the 
star. The mass–radius relation informs us that the star shrinks and, 
as a result, the electrons are more compressed and that means they 
jiggle faster. Add yet more mass and the star shrinks some more. 
Adding mass therefore increases the speed of  the electrons until, 
eventually, they are travelling at speeds comparable with the speed 
of  light. At the same time, the pressure will slowly change from 
P ∝ ρ̄5/3 to P ∝ ρ̄4/3 and in the latter case, the star is only stable at 
one particular value of  the mass. If  the mass is increased beyond this 
specific value then the right-hand side of  κ′M 4/3 ∝ GM 2 becomes 
larger than the left-hand side and the equation is unbalanced. This 
means that the electron pressure (which resides on the left-hand side of  
the equation) is insufficient to balance the inward pull of  gravity (which 
resides on the right-hand side) and the star must necessarily collapse.

If  we were more careful with our treatment of  the electron 
momentum and had taken the trouble to wheel in the advanced 
mathematics to compute the missing numbers (again a minor task 
for a personal computer), we could make a precise prediction for 
the maximum mass of  a white dwarf  star. It is

M = 0.2
hc
G

3/2
Z

Amp

2

= 5.8
Z

A

2

M ,
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where we have re-expressed the bundle of  physical constants in 
terms of  the mass of  our Sun (M = 0.2
hc
G

3/2
Z

Amp

2

= 5.8
Z

A

2

M ,). Notice, by the way, that all the 
extra hard work that we have not done simply returns the constant 
of  proportionality, which has a value of  0.2. This equation delivers 
the sought-after Chandrasekhar limit: 1.4 solar masses for Z/A = ½/Z/A = ½Z/A = ½ 1/2.

This really is the end of  our journey. The calculation in this chap-
ter has been at a higher mathematical level than the rest of  the book 
but it is, in our view, one of  the most spectacular demonstrations of  
the sheer power of  modern physics. To be sure, it is not a ‘useful’ 
thing, but it is surely one of  the great triumphs of  the human mind. 
We used relativity, quantum mechanics and careful mathematical 
reasoning to calculate correctly the maximum size of  a blob of  mat-
ter that can be supported against gravity by the Exclusion Principle. 
This means that the science is right; that quantum mechanics, no 
matter how strange it might seem, is a theory that describes the real 
world. And that is a good way to end.
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Further Reading

We used many books in the preparation of  this book, but some 
deserve special mention and are highly recommended.

For the history of  quantum mechanics, the definitive sources are 
two superb books by Abraham Pais: Inward Bound and Subtle Is the 
Lord . . . Both are quite technical but they are unrivalled in historical 
detail.

Richard Feynman’s book QED:  The  Strange  Theory  of   Light  and 
Matter is at a similar level to this book and is more focused, as the 
title suggests, on the theory of  quantum electrodynamics. It is a joy 
to read, like most of  Feynman’s writings.

For those in search of  more detail, the very best book on the fun-
damentals of  quantum mechanics is, in our view, still Paul Dirac’s 
book The Principles of  Quantum Mechanics. A high level of  mathem-
atical ability is needed to tackle this one.

Online, we should like to recommend two lecture courses that 
are available on iTunes University: Leonard Susskind’s ‘Modern Phys-
ics: The Theoretical Minimum – Quantum Mechanics’ and James 
Binney’s more advanced ‘Quantum Mechanics’ from the University 
of  Oxford. Both require a reasonable mathematical background.
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of science.  

In Why Does E=mc²? professors Brian Cox and Jeff 

Forshaw took readers on a journey to the frontier 

of twenty-fi rst-century science in order to explain 

and simplify the world’s most famous equation. 

Now, with the same captivating clarity and infec-

tious enthusiasm, they’ve set out to reveal the keys 

to understanding one of physics’ most fascina-

ting yet notoriously perplexing theories: quantum 

mechanics. 

 Just what is quantum mechanics? How does it 

help us understand the world? How does it connect 

with the theories of Newton and Einstein? And most 

importantly, how, despite all its apparent strange-

ness, can we be sure that it is a good theory?

 The subatomic realm has a reputation for weird-

ness, spawning theories that allow for concrete and 

astonishing predictions about the world around us, 

but also any number of profound misunderstan-

dings. In The Quantum Universe Cox and Forshaw 

cut through the confusion to provide an illumina-

ting—and accessible—approach to the world of 

quantum mechanics, revealing not only what it is 

and how it works, but why it matters. 

(and why anything that can happen, does)

BRIAN COX & JEFF FORSHAW
Authors of the international bestseller WHY DOES E=mc2?

      the 
quantum universe

brian cox is a Professor of 

Particle Physics and Royal Society 
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British Association Lord Kelvin Award and, in 2010, 

an OBE. He is also a popular presenter on TV and 

radio. He lives in London. 

jeff forshaw  is Professor 

of Theoretical Physics at the 

University of Manchester, spe-

cializing in the physics of elemen-

tary particles. He was awarded 

the Institute of Physics Maxwell Medal in 1999 for 

outstanding contributions to theoretical physics. 

He has cowritten an undergraduate textbook on 

relativity and is the author of an advanced level 

monograph on particle physics. He lives in 

Manchester, England.
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advance praise for 
the quantum universe

“A scientifi c match made in heaven.. . as breezily a written accessible 

account of the theory of quantum mechanics as you could wish for.”

—observer 

“Breaks the rules of popular science writing...[and] admirably shies away 

from dumbing down... . The authors’ love for their subject-matter shines 

through the book.”

—the economist

“This offering from Brian Cox and Jeff Forshaw is a solid introduction to the 

‘inescapable strangeness’ of the subatomic world.”

—nature

praise for why does e=mc2?

“[Cox and Forshaw] have blazed a clear trail into forbidding territory, from 

the mathematical structure of space-time all the way to atom bombs, 

astrophysics, and the origin of mass.”

—new scientist

“I can think of no one, Stephen Hawking included, who more perfectly 

combines authority, knowledge, passion, clarity, and powers of elucidation 

than Brian Cox. If you really want to know how Big Science works and why 

it matters to each of us in the smallest way then be entertained by this 

dazzlingly enthusiastic man.”

—stephen fry
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